
FunctionGraph

Best Practice

Issue 01

Date 2026-01-12

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2026. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 FunctionGraph Best Practices... 1

2 Performance Optimization and Security Practices..4
2.1 Performance Optimization... 4
2.2 Cold Start Optimization.. 5
2.3 Security Best Practices... 7

3 Data Processing Practices.. 9
3.1 Using FunctionGraph to Compress Images in OBS... 9
3.2 Using FunctionGraph to Watermark Images in OBS..17
3.2.1 Introduction... 17
3.2.2 Preparation.. 18
3.2.3 Building a Program... 19
3.2.4 Adding an Event Source.. 21
3.2.5 Watermarking Images... 22
3.3 Using FunctionGraph to Convert DIS Data Format and Store the Data to CloudTable...............................24
3.3.1 Introduction... 24
3.3.2 Preparation.. 24
3.3.3 Building a Program... 26
3.3.4 Adding an Event Source.. 32
3.3.5 Processing Data..33
3.4 Uploading Files Using APIs in FunctionGraph.. 34
3.4.1 Introduction... 34
3.4.2 Resource Planning... 34
3.4.3 Procedure... 34
3.4.3.1 Node.js... 35
3.4.3.2 Python.. 37
3.5 Converting Device Coordinate Data in IoTDA...39
3.5.1 Introduction... 39
3.5.2 Preparation.. 40
3.5.3 Building a Program... 42
3.6 Using FunctionGraph to Encrypt and Decrypt Files in OBS... 44
3.6.1 Introduction... 44
3.6.2 Preparation.. 45

FunctionGraph
Best Practice Contents

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.6.3 Building a Program... 47
3.6.4 Adding an Event Source.. 52
3.6.5 Processing Files.. 53
3.7 Identifying Abnormal Service Logs in LTS and Storing Them in OBS...54
3.7.1 Introduction... 54
3.7.2 Preparation.. 55
3.7.3 Building a Program... 57
3.7.4 Adding an Event Source.. 58
3.7.5 Processing Log Data... 58
3.8 Using FunctionGraph to Filter Logs in LTS in Real Time...59
3.8.1 Introduction... 59
3.8.2 Preparation.. 60
3.8.3 Building a Program... 61
3.8.4 Adding an Event Source.. 63
3.8.5 Processing Results... 64
3.9 Using FunctionGraph to Rotate Images Stored in OBS... 65
3.9.1 Introduction... 65
3.9.2 Preparation.. 66
3.9.3 Building a Program... 67
3.9.4 Processing Images... 72
3.10 Using FunctionGraph to Compress and Watermark Images...73

4 Functional Application Practices... 76
4.1 Using FunctionGraph and CTS to Identify Login and Logout Operations from Invalid IP Addresses..... 76
4.1.1 Introduction... 76
4.1.2 Preparation.. 77
4.1.3 Building a Program... 79
4.1.4 Adding an Event Source.. 79
4.1.5 Processing Operation Records...80
4.2 Using FunctionGraph Functions As the Backend to Implement APIG Custom Authorizers........................81
4.2.1 Introduction... 81
4.2.2 Resource Planning... 81
4.2.3 Building a Program... 82
4.2.4 Adding an Event Source.. 87
4.2.5 Debugging and Calling the API.. 88
4.3 Using FunctionGraph HTTP Functions to Process gRPC Requests... 89
4.4 Using a Java Function and Log4j2 to Print Logs..92
4.5 Using FunctionGraph to Deploy Stable Diffusion for AI Drawing... 95
4.5.1 Introduction... 95
4.5.2 Resource and Cost Planning.. 96
4.5.3 Procedure... 98
4.5.4 Deploying and Using the Stable Diffusion Application... 100
4.5.5 (Optional) Binding a Custom Domain Name... 104

FunctionGraph
Best Practice Contents

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

4.5.6 (Optional) Uploading a Custom Model.. 107
4.5.7 (Advanced) Using ECS as an NFS Server to Isolate Resources of Multiple Users.................................... 113
4.5.8 (Advanced) Mounting an SFS File System to Multiple Users..118
4.5.9 (Advanced) Enabling WebUI Authentication.. 120
4.5.10 (Advanced) Accessing Applications Using APIs..120
4.5.11 Disclaimer..122
4.6 Deploying an MCP Server Using FunctionGraph... 122

5 Function Building Practices.. 131
5.1 Building an HTTP Function Using an Existing Spring Boot Project...131
5.2 Building an HTTP Function Using Go.. 135
5.3 Using FunctionGraph to Access RDS for MySQL... 137
5.3.1 Introduction...137
5.3.2 Procedure... 139
5.3.3 Sample Code for Accessing RDS for MySQL.. 147
5.3.4 Sample Code Interpretation.. 150

FunctionGraph
Best Practice Contents

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 FunctionGraph Best Practices

This document summarizes practices in common application scenarios of
FunctionGraph. Each practice case is given detailed solution description and
operation guidance, helping you easily build your services based on
FunctionGraph.

Performance Optimization and Security

Table 1-1 Performance optimization and security practices

Practice Description

Performance
Optimization

Introduces performance optimization practices
including cold start and function execution
improvement and provides guidance to help you build
more efficient and stable applications on
FunctionGraph.

Cold Start
Optimization

Optimize the cold start of a function to improve user
experience in building a serverless architecture.

Security Best Practices Improve the overall security capability of
FunctionGraph.

Data Processing Practices

Table 1-2 Data processing best practices

Practice Description

Using FunctionGraph to
Convert DIS Data
Format and Store the
Data to CloudTable

Use functions and DIS to collect real-time IoT data
streams, convert the format of the collected data,
and store the data to CloudTable Service.

FunctionGraph
Best Practice 1 FunctionGraph Best Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Practice Description

Uploading Files Using
APIs in FunctionGraph

Use Node.js and Python as examples to describe
how to configure a backend parsing function and
use APIG to upload files from devices to cloud
servers.
This feature applies to web and app scenarios, such
as reporting service run logs and uploading web
app images.

Converting Device
Coordinate Data in
IoTDA

Use functions and IoTDA to transfer data reported
by IoT devices and device status changes to
FunctionGraph to trigger function running and
convert coordinates (from WGS84 coordinates to
GCJ02 coordinates).
It is applicable to scenarios such as processing
device-reported data for storage in OBS, structuring
and cleansing reported data before storing it in
databases, and triggering event notifications based
on device status changes.

Using FunctionGraph to
Encrypt and Decrypt
Files in OBS

Use a function and an OBS Application Service
trigger to encrypt and decrypt files in OBS.

Identifying Abnormal
Service Logs in LTS and
Storing Them in OBS

Use LTS to configure a function for extracting alarm
logs, identify abnormal log data in LTS, store the
data in an OBS bucket, and use SMN to push alarm
SMS messages and emails to service personnel.

Using FunctionGraph to
Filter Logs in LTS in Real
Time

Configure a function to extract log data, analyze
and filter key information, and transfer the data to
LTS.

Using FunctionGraph to
Rotate Images Stored in
OBS

Use a function flow to automatically rotate images
in OBS.
Function flows are available in CN East-Shanghai1
and AP-Singapore.

Using FunctionGraph to
Compress and
Watermark Images

Use a function flow to automatically compress and
watermark images.
Function flows are available in CN East-Shanghai1
and AP-Singapore.

FunctionGraph
Best Practice 1 FunctionGraph Best Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Functional Application Practices

Table 1-3 FunctionGraph functional application best practices

Practice Description

Using FunctionGraph
and CTS to Identify
Login and Logout
Operations from Invalid
IP Addresses

Configure functions for obtaining, analyzing, and
processing cloud service resource operation
information using CTS, and then push alarm SMS
messages and emails using SMN to notify service
personnel of handling the alarms.

Using FunctionGraph
Functions As the
Backend to Implement
APIG Custom
Authorizers

Quickly create an API whose backend service is
FunctionGraph and call the API using custom
authorizer.

Using FunctionGraph
HTTP Functions to
Process gRPC Requests

Process gRPC requests in FunctionGraph.
Currently, only the LA-Santiago region is
supported.

Using a Java Function
and Log4j2 to Print Logs

Use Java functions to configure Log4j2 to print logs.

Using FunctionGraph to
Deploy Stable Diffusion
for AI Drawing

Deploy Stable-Diffusion applications in the
application center of FunctionGraph and provides
multiple methods for customizing AI drawing
applications.

Deploying an MCP
Server Using
FunctionGraph

Deploy popular open-source MCP server
applications in one click in FunctionGraph and
provide services accessible from the Internet
through APIG.

Function Building Practices

Table 1-4 Function building best practices

Practice Description

Building an HTTP
Function Using an
Existing Spring Boot
Project

Deploy a Spring Boot application as an HTTP
function on FunctionGraph.

Building an HTTP
Function Using Go

Deploy a Go application as an HTTP function on
FunctionGraph.

Using FunctionGraph to
Access RDS for MySQL

This section describes how to access RDS for MySQL
from FunctionGraph and query data, and provides
sample code for testing.

FunctionGraph
Best Practice 1 FunctionGraph Best Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

2 Performance Optimization and Security
Practices

2.1 Performance Optimization
As serverless technologies become increasingly popular, performance optimization
is crucial for better efficiency and user experience.

This section focuses on optimizing FunctionGraph, covering cold start and
function execution improvements. It offers practical tips to achieve optimal
performance in various scenarios, helping you build more efficient and stable
applications.

Code Optimization
● Write idempotent code. This ensures that functions handle repeated events in

the same way.
● Use connection pools (HTTP, database, and Redis) properly to reduce the cold

start overhead of creating new connections.
● Avoid reinitializing variables on each invocation. Use global static variables or

singletons. For middleware like Redis or Kafka, initialize clients in an init
method or as global variables to reduce cold start overhead.

● Enhance client retry mechanisms. When a function invocation returns
non-200 status codes (such as 500, 429, 504), implement retry logic based on
service needs to improve reliability.

● Log appropriately. When accessing third-party services, Huawei Cloud services,
or performing key operations in FunctionGraph, log the actions for
troubleshooting, performance optimization, and service analysis.

Performance Stress Testing

Performance stress testing is crucial for choosing the optimal configuration.
During the testing, use platform metrics, logs, and call chains to analyze
performance data and optimize configuration. For more details on observable
metrics, see Function Metrics.

FunctionGraph
Best Practice 2 Performance Optimization and Security Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0390_01.html

Code Simplification and Image Downsizing

FunctionGraph downloads function code during cold start, which affects startup
time. Larger code files extend download time and increase startup duration.

For custom image-based functions, larger images also prolong startup. To reduce
cold start time, optimize applications by removing unnecessary code and reducing
third-party library dependencies. For example, run the command npm prune in
Node.js and autoflake in Python.

In addition, clearing test cases, unused binaries, and data files in third-party
libraries can also reduce code download and decompression time.

Larger Memory

Increasing function memory can enhance CPU performance and accelerate startup
and execution. Monitor execution time to assess the effect of various memory
settings and select the best configuration.

For details, see Function Monitoring. For details about how to configure the
memory, see Configuring Basic Settings.

Public Dependencies

When developing functions, especially in Python, third-party dependencies are
often required. During cold start, large dependencies can increase startup time.

FunctionGraph provides public dependencies that are pre-loaded on execution
nodes to mitigate this issue. Therefore, prioritize using public dependencies and
reduce the use of private ones. For details, see Configuring Dependency
Packages.

Reserved Instances

After reserved instances are created for a function, the code, dependencies, and
initializer of the function are automatically loaded. Reserved instances are always
alive in the execution environment, eliminating the influence of cold starts on your
services. For details about how to configure reserved instances, see Reserved
Instance Management.

Function Initializer

For functions that are invoked frequently, initializing HTTP or database
connections in the Initializer can make each execution much faster. For details
about how to configure the function initializer, see Configuring Initialization.

2.2 Cold Start Optimization
The serverless architecture features pay-per-use, auto scaling, and complexity
shielding, making it a new paradigm of next-generation cloud computing.
However, in real-time scenarios, cold start poses a significant challenge. When
building web services with serverless, if the cold start and initialization time
exceed 5 seconds, it can greatly impact user experience. Therefore, accelerating

FunctionGraph
Best Practice 2 Performance Optimization and Security Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0212.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1828.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2119.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2119.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1837.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1837.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0201.html

cold start and improving user experience is a pressing issue when constructing
serverless architectures.

The lifecycle of a serverless instance consists of three phases:

● Initialization: FunctionGraph attempts to reuse a previous execution
environment, or if none is available, it creates resources, downloads function
code, initializes extensions and runtime, and runs initialization code (non-
main program code).

● Execution: In this phase, the instance starts to execute the function after
receiving an event, and waits for the next event after the function completes.

● Shutdown: This phase starts if the function does not receive any calls within a
period of time. In this phase, FunctionGraph closes the runtime, then sends a
shutdown event to each extension, and deletes the environment.

When FunctionGraph is triggered, if no activated function instance is available, the
function code is downloaded and an execution environment is created. The period
from the time when a function is triggered to the time when a new
FunctionGraph environment is created is called cold start. In the serverless
architecture, the cold start cannot be avoided.

Currently, FunctionGraph has optimized the cold start on the system side. For
details about the cold start on the user side, see the following solutions.

Memory
Given a fixed level of request concurrency, higher function memory leads to better
cold start performance with more CPU resources allocated.

Cold Start with Snapshot
Cold start is quite prominent in Java applications. Huawei Cloud FunctionGraph
has proposed a process snapshot–based cold start acceleration solution, which
helps you break through the performance bottleneck while involving zero or few
code changes. In this solution, the execution environment is restored from a
snapshot captured after initialization, avoiding complex framework startup and
service initialization. The startup latency of Java applications is significantly
reduced, and the performance is improved by over 90%.

You can use a Java function to enable snapshot-based cold start. For details, see
Configuring Snapshot-based Cold Start. FunctionGraph executes the
initialization code of the function, captures a snapshot of the initialization context,
and then caches the snapshot after encryption. When the function is invoked and
a cold start is triggered for scale-out, the execution environment is restored from
the snapshot instead of an initialization process.

Code Simplification and Image Downsizing
FunctionGraph downloads function code during cold start, but larger code
packages or custom images can prolong download and cold start time. Optimize
your application by removing unnecessary code (using commands like npm prune
in Node.js and autoflake in Python) and third-party library dependencies (test
case source code, useless binary files, and data files) to speed up the download
and decompression process.

FunctionGraph
Best Practice 2 Performance Optimization and Security Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1884.html

Public Dependencies

When developing applications, especially in Python, third-party libraries are often
included. Large dependencies can slow down cold start as they need to be
downloaded. FunctionGraph offers both public and private dependency modes.
Public dependencies are recommended because they are pre-downloaded to
execution nodes to save time.

Warming

When an event triggers a function, if a function instance in an active state can be
called, cold start can be avoided, and a response time can be reduced. You can use
either of the following warming methods:

● Use timer triggers. For details, see Using a Timer Trigger.
● Use reserved instances. For details, see Reserved Instance Management.

2.3 Security Best Practices
Security is a shared responsibility between Huawei Cloud and you. Huawei Cloud
is responsible for the security of cloud services. You need to properly use the
security capabilities provided by cloud services to protect data. For details,
see .Shared Responsibility.

This document provides security best practices for FunctionGraph to improve
overall security capabilities. By following this guide, you can continuously assess
the security status of functions, effectively integrate various security features of
FunctionGraph, strengthen its security defense, and ensure data stored in
FunctionGraph is not leaked or tampered with, while also safeguarding data
transmission.

Make security configurations from the following dimensions to meet your service
needs.

Trusted Code and Dependencies
● Before deploying function code, you are advised to use CodeArts Check to

perform static scanning and vulnerability analysis to ensure code security.
● Use dependency libraries from reliable sources and update them periodically.

Do not use third-party libraries with known vulnerabilities.

Sensitive Information Protection
● If your code or configuration contains sensitive information, such as AK/SK,

token, and password, encrypt environment variables. Otherwise, the
information may be displayed in plaintext on the UI or in the API return
result, causing sensitive information leakage.

● Anonymize the privacy data (such as logs and personal information) during
function processing. Do not print logs in plaintext to prevent sensitive
information leakage.

● FunctionGraph provides temporary download links with expiration. You need
to protect these links to prevent code leakage.

FunctionGraph
Best Practice 2 Performance Optimization and Security Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0207.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1837.html
https://support.huaweicloud.com/intl/en-us/productdesc-functiongraph/functiongraph_01_0213.html
https://support.huaweicloud.com/intl/en-us/bestpractice-codecheck/codeartscheck_14_1002.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html#section1

Fine-grained Permission Control and Identity Authentication
● When configuring agency permissions, AKs, and SKs for functions through

Identity and Access Management (IAM), comply with the principle of least
privilege to ensure that the functions can access only specified resources. For
example, you can restrict the read and write permissions of a function on a
specific OBS bucket to prevent unauthorized access.

● When configuring an APIG trigger, you are advised to enable IAM or custom
authorizer to ensure that only authorized requests can trigger function
execution. In addition, you can use APIG to implement request throttling to
prevent resource exhaustion caused by malicious requests.

VPC Configuration
To access resources in a Virtual Private Cloud (VPC), such as RDS, you are advised
to configure VPC access for your function to ensure that it can communicate with
other cloud services in an isolated network environment.

Version Management
FunctionGraph supports version management. You are advised to create multiple
versions for each function and use stable versions in the production environment.
In addition, you can use aliases to switch versions in case of security issues.

FunctionGraph
Best Practice 2 Performance Optimization and Security Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0920.html#section5
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0222.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0180.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1829.html

3 Data Processing Practices

3.1 Using FunctionGraph to Compress Images in OBS

Introduction
This practice is applicable to compressing a single image or a batch of images.
High-quality images consume significant storage/bandwidth, slowing website/app
loading. Using OBS and FunctionGraph, you can build an image compression
solution to automatically process images in buckets, optimizing storage and
resource efficiency.

Constraints
● OBS Application Service trigger is available only in CN North-Beijing4, CN

North-Ulanqab1, and CN East-Shanghai1. When creating a function or an
OBS bucket, select one of the preceding regions.

● Ensure that the created function and OBS bucket are in the same region.

Resource and Cost Planning
Table 3-1 lists the resources and costs required for using FunctionGraph to
compress images in OBS.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Table 3-1 Resource and cost planning

Resource Description Billing

OBS ● Product type:
object storage

● Region: CN
North-Beijing4

● Storage policy:
Single-AZ
storage

● Storage class:
Standard

● Bucket policy:
Private

● Quantity: 2

● Billing mode: Pay-per-use
● For details about billing items, see

Object Storage Service (OBS)
Pay-per-Use Billing.

FunctionGraph ● Function type:
Event function

● Region: CN
North-Beijing4

● Quantity: 1

● Billing mode: Pay-per-use
● The first 1 million invocations are

free of charge in a month. For
details about the billing items,
see Pay-per-Use Billing.

Procedure
The following table describes how to use FunctionGraph to compress images in
OBS.

Table 3-2 Procedure

Step Description

Step 1:
Creating Two
OBS Buckets

Create two OBS buckets. The source bucket is used to store
the original image, and the target bucket is used to store the
compressed image.

Step 2:
Creating a
Cloud Service
Agency

Create a cloud service agency to authorize FunctionGraph to
access other cloud services so that FunctionGraph can work
with OBS.

Step 3:
Creating an
Image
Compression
Function

Create a function from scratch, configure the code
environment, and create an OBS Application Service trigger
to automatically compress images uploaded or updated in the
OBS source bucket.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html
https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html
https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html

Step Description

Step 4:
Verifying
Image
Compression

Verify that the image is compressed in the target bucket.

Step 1: Creating Two OBS Buckets

Step 1 Log in to the OBS console, choose Object Storage.

Step 2 Click Create Bucket.

Step 3 On the displayed Create Bucket page, set the OBS source bucket parameters by
referring to Table 3-3.

Table 3-3 OBS source bucket configuration

Parameter Requirements Example Value

Region Mandatory
Region where the bucket is
located. Select a region close
to your service to reduce
network latency and improve
access speed. After a bucket is
created, its region cannot be
changed. Currently, the OBS
Application Service trigger
supports only CN North-
Beijing4, CN North-
Ulanqab1, and CN East-
Shanghai1.

CN North-Beijing4

Bucket Name Mandatory.
Bucket name, which must be
globally unique. After a bucket
is created, its name cannot be
changed.

your-bucket-input

Data Redundancy
Policy

Mandatory.
● Multi-AZ storage: Data is

stored in multiple AZs to
achieve higher reliability.

● Single-AZ storage: Data is
stored in a single AZ, which
costs less.

● After a bucket is created, its
data redundancy policy
cannot be changed.

Single-AZ storage

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://console-intl.huaweicloud.com/obs/?locale=en-us

Parameter Requirements Example Value

Storage Class Mandatory.
● Standard: For storing a

large number of hot files or
small files that are
frequently accessed
(multiple times per month
on average) and require
fast access. Both single-AZ
and multi-AZ storage are
supported.

● Infrequent Access: For
storing data that is less
frequently accessed (less
than 12 times per year on
average), but when needed,
the access has to be fast.
Both single-AZ and multi-
AZ storage are supported.

● Archive: For archiving data
that is rarely accessed
(once a year on average)
and does not require fast
access. Only single-AZ
storage is supported.

Standard

Bucket Policy Mandatory.
Controls read and write
permissions for the bucket.
● Private: Only users granted

permissions by the bucket
ACL can access the bucket.

● Public Read: Anyone can
read objects in the bucket.

● Public Read/Write: Anyone
can read, write, or delete
objects in the bucket.

Private

Enterprise Project Mandatory.
Enterprise projects let you
manage cloud resources by
projects. The default project is
default.

default

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Parameter Requirements Example Value

Properties Optional.
For details, see Creating a
Bucket.
● Direct Reading: allows you

to download data from the
Archive storage class
without restoring them in
advance. Direct reading is a
billable function.

● Server-Side Encryption:
the OBS server encrypts the
objects uploaded from the
client before storing them.
If this feature is enabled,
you must specify an
encryption key.

● WORM: When enabled,
you can configure a
retention policy for the
current bucket. The object
version which the retention
policy is applied to cannot
be deleted within a
specified period.

● Tags: Tags are used to
identify and classify OBS
buckets.

● Direct Reading:
disabled

● Server-Side
Encryption: disabled

● WORM: disabled
● Tags: -

Step 4 Repeat Step 3 to create the target bucket. Set the Bucket Name to your-bucket-
output and keep other parameters the same as those of the source bucket.

Step 5 View your-bucket-input and your-bucket-output in the bucket list.

----End

Step 2: Creating a Cloud Service Agency
Step 1 Log in to IAM console. In the navigation pane, choose Agencies. On the displayed

page, click Create Agency in the upper right corner.

Step 2 Set the following parameters:
● Agency Name: Enter serverless_trust.
● Agency Type: Select Cloud service.
● Cloud Service: Select FunctionGraph.
● Validity Period: Select Unlimited.
● Description: Retain the default value.

Step 3 Click OK. The system displays a message indicating that the creation is successful.
Click Authorize.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045853662.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045853662.html
https://console-intl.huaweicloud.com/iam/?locale=en-us

Step 4 On the Select Policy/Role page, search for and select the OBS Administrator
policy, and click Next.

Figure 3-1 Selecting a policy

Step 5 Set the minimum authorization scope. Select All resources for Scope and click
OK.

NO TE

The OBS Administrator policy does not support specifying specific region or project
resources.

Step 6 The system displays a message indicating that the authorization is successful. Click
Finish to return to the agency list. If serverless_trust is displayed in the list, the
agency is created successfully.

----End

Step 3: Creating an Image Compression Function

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Select Create from scratch, set the function information by referring to Table 3-4,
and click Create Function.

Table 3-4 Configuring function parameters

Paramet
er

Requirements Example Value

Function
Type

Mandatory.
● Event Function: triggered by triggers.
● HTTP Function: triggered once HTTP

requests are sent to specific URLs.

Event Function

Region Mandatory.
Region where the code is deployed. The
region must be the same as that of the
OBS bucket.

CN North-Beijing4

Function
Name

Mandatory.
Function name, which contains letters,
digits, underscores (_), and hyphens (-).
It must start with a letter and end with a
letter or digit. The length cannot exceed
60 characters.

fss_examples_image_thu
mbnail

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Paramet
er

Requirements Example Value

Enterpris
e Project

Mandatory.
Enterprise project to which the function
is added. The enterprise project must be
the same as that of the OBS bucket. The
default enterprise project is default.

default

Agency This parameter is optional but
mandatory in this practice.
Name of the agency used by
FunctionGraph to access other cloud
services. Select the agency created in
Step 2: Creating a Cloud Service
Agency.

serverless_trust

Runtime Mandatory.
Development language and language
version of the function. CloudIDE
supports Node.js, Python, and PHP only.

Python3.6

Step 4 On the fss_examples_image_thumbnail details page, configure the following
information:

1. Download the sample code fss_examples_image_thumbnail_eg.zip.
2. On the Code tab page, select Upload > Local ZIP, add the downloaded

fss_examples_image_thumbnail_eg.zip file, and click OK. The code is
automatically deployed.

3. Click Add at the bottom of the page, add the public dependency package
pillow-7.1.2, retain the default version 1, and click OK.

4. On the Configuration > Basic Settings tab page, modify the following
configuration:
– For Execution Timeout, enter 40.
– For Memory, select 256.
Click Save.

5. Choose Configuration > Environment Variables, click Edit Environment
Variable. In the dialog box that is displayed, click Add, add information in
Table 3-5, and click OK.

Table 3-5 Environment variables

Key Value Description

output_bucket your-bucket-output Name of the OBS bucket where
compressed images are stored.

obs_endpoint obs.cn-
north-4.myhuaweiclo
ud.com

OBS endpoint in CN North-
Beijing4 (For other regions, see
Regions and Endpoints.)

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_image_thumbnail_eg.zip
https://developer.huaweicloud.com/intl/en-us/endpoint?OBS

6. On the Configuration > Triggers tab page, click Create Trigger. In the

displayed dialog box, configure basic information by referring to Table 3-6
and click OK.

Table 3-6 Configuring trigger parameters

Paramete
r

Requirements Example Value

Trigger
Type

Mandatory.
Add an OBS Application Service
trigger to trigger the function when
an operation is performed on an
OBS bucket.

OBS Application Service

Trigger
Name

Mandatory.
Name of the trigger to be created.
Only letters, digits, underscores (_),
and hyphens (-) are allowed. The
value cannot start with a digit or
hyphen (-). Maximum length: 128
characters.

Image

Bucket
Name

Mandatory.
Select the created OBS bucket to
store the original images.

your-bucket-input

Event
Type

Mandatory.
Triggering event type. In this
practice, the function is triggered by
uploading or updating bucket
objects.

Create or override
bucket objects via UI or
Put request Create or
override bucket objects
via Post request

Object
Name
Prefix

Optional.
Enter a keyword for limiting
notifications to those about objects
whose names start with the
matching characters. This limit can
be used to filter the names of OBS
objects.

Leave this parameter
blank.

Object
Name
Suffix

Optional.
Enter a keyword for limiting
notifications to those about objects
whose names end with the
matching characters. This limit can
be used to filter the names of OBS
objects.

Leave this parameter
blank.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Paramete
r

Requirements Example Value

Object
Name
Encoding

Mandatory.
Specifies whether to encode the
object name.

Enabled by default.

----End

Step 4: Verifying Image Compression

Step 1 Log in to the OBS console, click the your-bucket-input bucket. The Objects tab
page is displayed.

Step 2 Click Upload Object, set Storage Class to Standard, and upload an image to be
compressed. After the upload is successful, the page shown in Figure 3-2 is
displayed.

Figure 3-2 Uploading an image

Step 3 Go to the Objects page of the your-bucket-output bucket and view the size of
the compressed image.

Figure 3-3 Viewing compressed images

NO TICE

To avoid unnecessary storage fees, you can delete the images stored in the two
OBS buckets as required after the practice. Deleted data cannot be restored.
Exercise caution when performing this operation.

----End

3.2 Using FunctionGraph to Watermark Images in OBS

3.2.1 Introduction
The best practice for FunctionGraph guides you through image watermarking
based on a function. (OBS Application Service trigger is available only in CN
North-Beijing4, CN North-Ulanqab1, and CN East-Shanghai1.)

Scenarios
● Upload images to a specified OBS bucket.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://console-intl.huaweicloud.com/obs/?locale=en-us

● Watermark each uploaded image.
● Upload the processed images to another specified OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.
2. The function you create must be in the same region (default region) as the OBS

buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function and set the OBS Application Service trigger.
● Upload an image to one of the buckets.
● The function is triggered to watermark the image.
● The function uploads the processed image to the other bucket.

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:
1. Two OBS buckets (respectively used for storing uploaded and processed images)
2. An image watermarking function
3. An OBS Application Service trigger, which is used to associate a function with an

OBS bucket.

3.2.2 Preparation

Before creating a function and adding an event source, you need to create two
OBS buckets to respectively store uploaded and watermarked images.

After creating the OBS buckets, you must create an agency to delegate
FunctionGraph to access OBS resources.

Creating OBS Buckets
Precautions

● The function and the source and destination buckets for storing images must
be in the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When an image is uploaded to the bucket, the function is
triggered to process the image and store the processed image into the bucket
again. In this way, the function executes endlessly.)

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.
● For Region, select a region.
● For Data Redundancy Policy, select Single-AZ storage.
● For Bucket Name: Enter a custom bucket name, for example, bucket-input-

fg.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://console-intl.huaweicloud.com/obs/?locale=en-us

● For Default Storage Class, select Standard.

● For Bucket Policies, select Private.

● For Server-Side Encryption: select Disable

● For Direct Reading, select Disable.

Click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket as bucket-output-fg, and select the same region
and storage class as those of the source bucket.

Step 4 View bucket-input-fg and bucket-output-fg in the bucket list.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.

● For Agency Name: Enter an agency name, for example, serverless_trust.

● For Agency Type, select Cloud service.

● For Cloud Service, select FunctionGraph.

● For Validity Period, select Unlimited.

● For Description: Enter the description.

Step 4 Click Next. On the Select Policy/Role page, select OBS Administrator.

Step 5 Click Next, select an authorization scope that meets your service requirements,
and click OK.

----End

3.2.3 Building a Program
Download watermark.zip to create an image watermarking function from
scratch.

Creating a Deployment Package

This example uses a Python function to watermark images. For details about
function development, see Developing Functions in Python. Figure 3-4 shows
the sample code directory. The service code is not described.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/watermark.zip
https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0420.html

Figure 3-4 Sample code directory

Under the directory, index.py is a handler file. The following code is a snippet of
the handler file. Parameter obs_output_bucket is the address for storing
watermarked images and must be configured when you create a function.

def handler(event, context):
 srcBucket, srcObjName = getObjInfoFromObsEvent(event)
 outputBucket = context.getUserData('obs_output_bucket')

 client = newObsClient(context)
 # download file uploaded by user from obs
 localFile = "/tmp/" + srcObjName
 downloadFile(client, srcBucket, srcObjName, localFile)

 outFileName, outFile = watermark_image(localFile, srcObjName)
 # Upload converted files to a new OBS bucket.
 uploadFileToObs(client, outputBucket, outFileName, outFile)

 return 'OK'

Creating a Function
When creating a function, specify an agency with OBS access permissions so that
FunctionGraph can invoke the OBS service.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create.
● For Function Type, select Event Function.
● For Function Name: Enter a function name, for example,

fss_examples_image_watermark.
● For Agency, select serverless_trust created in Creating an Agency.
● For Runtime, select Python 3.6.

Step 4 Go to the fss_examples_image_watermark details page, click the Code tab, click
Add in the Dependencies area at the bottom, and add the public dependency
pillow-7.1.2.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 3-5 Adding a dependency

Step 5 On the fss_examples_image_watermark details page, configure the following
information:

1. On the Code tab, choose Upload > Local ZIP, upload the sample code
watermark.zip.

2. Choose Configuration > Basic Settings, set the following parameters, and
click Save.
– For Memory, select 128.
– For Execution Timeout, enter 3.
– For Handler, retain the default value index.handler.
– For App, retain the default value default.
– For Description, enter Image watermarking.

3. Choose Configuration > Environment Variables, set environment variables,
and click Save. The following figure is for reference only. Replace the
following values with the actual values.

Table 3-7 Environment variables

Key Value Description

obs_output_b
ucket

bucket-output-fg Key: OBS bucket parameter for
storing output watermark images,
which is defined in the index.py
file.
Value: OBS bucket created in
Creating OBS Buckets for storing
output watermark images.

obs_region For example, cn-
north-4.

Key: region of the OBS bucket
where the output watermark
image is stored, which is defined
in the index.py file. It must be the
same as the region where the
function is located.
Value: region where the OBS
bucket obs_output_bucket is
located. For details, see Regions
and Endpoints.

----End

3.2.4 Adding an Event Source
After creating the OBS buckets and function, add an event source to the function
by creating an OBS Application Service trigger. Perform the following procedure:

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://console-intl.huaweicloud.com/apiexplorer/?locale=en-us#/endpoint/FunctionGraph
https://console-intl.huaweicloud.com/apiexplorer/?locale=en-us#/endpoint/FunctionGraph

Step 1 On the fss_examples_image_watermark page, click the Triggers tab and click
Create Trigger.

Step 2 Select OBS Application Service for Trigger Type, and set the trigger information,
as shown in Figure 3-6.
● Trigger Name: Customize a trigger name.
● Bucket Name: Select bucket-input-fg created in Creating OBS Buckets.
● Event Type: Select Create or override bucket objects via UI or Put request

or Create or override bucket objects via Post request.

Figure 3-6 Creating an OBS Application Service trigger

Step 3 Click OK.

NO TE

After the trigger is created, when an image is uploaded or updated to bucket bucket-
input-fg, an event is generated to trigger the function.

----End

3.2.5 Watermarking Images
When an image is uploaded or updated to bucket bucket-input-fg, an event is
generated to trigger the function. The function watermarks the image and stores
the watermarked one into bucket bucket-output-fg.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Uploading an Image to Generate an Event
Log in to the OBS console, go to the object page of the bucket-input-fg bucket,
and upload the image.jpg image, as shown in Figure 3-7.

Figure 3-7 Uploading an image

Triggering the Function
After the image is uploaded to bucket bucket-input-fg, OBS generates an event
to trigger the image watermarking function. The function watermarks the image
and stores the watermarked one into bucket bucket-output-fg. You can view
running logs of fss_examples_image_watermark on the Logs tab page.

The Objects page of the bucket bucket-output-fg displays the watermarked
image image.jpg, as shown in Figure 3-8. In the Operation column, click
Download to download the image and view the watermarking effect, as shown in
Figure 3-9.

Figure 3-8 Output image

Figure 3-9 Watermarked image

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://console-intl.huaweicloud.com/obs/?locale=en-us

3.3 Using FunctionGraph to Convert DIS Data Format
and Store the Data to CloudTable

3.3.1 Introduction
The best practice for FunctionGraph guides you through DIS data processing based
on a function.

Scenarios

When using the Data Ingestion Service (DIS) to collect real-time Internet of Things
(IoT) data streams, process the collected data, for example, convert its format, and
then store the processed data into the CloudTable Service (CloudTable).

Procedure
● Create a Virtual Private Cloud (VPC) and cluster.
● Build a data processing program and package the code.
● Create a function on the FunctionGraph console.
● Configure a DIS event to test the data processing function.

3.3.2 Preparation
This tutorial demonstrates how to convert the format of DIS data and store the
converted data into CloudTable. To achieve this purpose, you need to create a VPC
and then create a cluster on the CloudTable console.

Before creating a function, you must create an agency to delegate FunctionGraph
to access DIS and CloudTable resources.

Creating a VPC

Step 1 Log in to the VPC console and click Create VPC.

Step 2 Set the private cloud information.

In the Basic Information area, enter a name, for example, vpc-cloudtable. Use
the default values for other parameters.

For Default Subnet, use the default settings.

Step 3 Confirm the configuration information and click Create Now.

----End

Creating a Cluster

Step 1 In the left navigation pane of the management console, choose Analytics >
CloudTable Service to go to the CloudTable console. On the Cluster Mode page,
click Buy Cluster.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://console-intl.huaweicloud.com/vpc/?locale=en-us

Step 2 Set the cluster information.
● Region: Use the default region.
● Name: Enter a name, for example, cloudtable-dis.
● VPC: Select vpc-cloudtable created in Creating a VPC.
● Retain the default values for other parameters.

Figure 3-10 Buying a cluster

Step 3 Confirm the configuration information and click Submit.

Figure 3-11 Creating a cluster

NO TE

Creating a cluster takes a long time. You can check the creation progress according to
Figure 3-11.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name: Enter an agency name, for example, DISDemo.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

● For Validity Period, select Unlimited.

Step 4 Click Next. On the Select Policy/Role page, select DIS Administrator and
Cloudtable Administrator.

NO TE

Cloudtable Administrator depends on Tenant Guest and Server Administrator. When
you select the former, the latter will also be selected.

Step 5 Click Next, select an authorization scope that meets your service requirements,
and click OK.

----End

3.3.3 Building a Program
Download the source code and program package (including function
dependencies) to create a function from scratch for converting DIS stream data
formats.

Creating a Project

This example uses a Java function to convert the format of DIS stream data. For
details about function development, see Developing Functions in Java. The
service code is not described.

Download the sample source code package fss_examples_dis_cloudtable_src.zip,
decompress the file, and import it to Eclipse, as shown in Figure 3-12.

Figure 3-12 Sample code

In the sample code, modify proID (project ID), clusID (cluster ID), and hostName
(CloudTable endpoint), and save the modification.

To obtain the project ID, perform the following steps:

1. Under the current login account in the upper right corner, choose My
Credentials, as shown in Figure 3-13.

2. Obtain the project ID in the project list, as shown in Figure 3-14.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable_src.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable.zip
https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0430.html
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable_src.zip

Figure 3-13 My Credentials

Figure 3-14 Project ID

To obtain the cluster ID, perform the following steps:

1. Log in to the CloudTable console.
2. In the navigation pane, choose Cluster Management. Click cluster

cloudtable-dis created in Creating a Cluster.
3. On the cloudtable-dis page that is displayed, find the cluster ID, as shown in

Figure 3-15.

Figure 3-15 Cluster ID

When creating a function on the FunctionGraph console, set a handler in the
format of [package name].[file name].[function name], for example,
com.huawei.cff.TableTester.MyHandler for the preceding code.

Packaging the Code
Use Eclipse to package the code into a JAR file named Table Tester.jar according
to the following figures.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://console-intl.huaweicloud.com/cloudtable/?locale=en-us

Figure 3-16 Exporting the code

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Figure 3-17 Selecting a file type

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Figure 3-18 Publishing the code file

Package the function dependencies by performing the following steps:

1. Download program package fss_examples_dis_cloudtable.zip, and
decompress it, as shown in Figure 3-19.

2. Use Table Tester.jar to replace DIS Test.jar, as shown in Figure 3-20.
3. Package all of the files into disdemo.zip, as shown in Figure 3-21.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_dis_cloudtable.zip

Figure 3-19 File directory before replacement

Figure 3-20 File directory after replacement

Figure 3-21 Packaging the files in ZIP format

Creating a Function
When creating a function, specify an agency to delegate FunctionGraph to access
DIS and CloudTable resources.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Select Create from scratch, set the function information, and click Create
Function.
● For Function Type, select Event Function.
● For Function Name: Enter a function name, for example, DISDemo.
● For Agency, select DISDemo created in Preparation.
● For Runtime, select Java 8.

Step 4 On the function details page, configure the following information:
● Choose Configuration > Basic Settings, change the handler to

com.huawei.cff.TableTester.MyHandler, and click Save.
● On the Code tab, choose Upload > Local ZIP, upload the disdemo.zip

package generated in Packaging the Code.

----End

Modifying Function Configurations
After the function is created, the default memory is 128 MB, and the default
timeout is 3s, which are insufficient for the data processing. Perform the following
steps to modify the configurations.

Step 1 On the DISDemo details page, choose Configuration > Basic Settings, and
modify the following information as required:
● For Memory, select 512.
● For Execution Timeout, enter 15.
● Keep other parameters unchanged.

Step 2 Click Save.

----End

3.3.4 Adding an Event Source
After creating the function, you can add an event source by creating a DIS trigger.
Perform the following procedure:

Step 1 On the DISDemo page, select Configure Test Event on the Code tab, as shown in
Figure 3-22.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 3-22 Configuring a test event

Step 2 In the Configure Test Event dialog box, set the test event information, as shown
in Figure 3-23.
● Select Create new test event.
● Event Template: Select Data Ingestion Service (DIS).
● Event Name: Enter an event name, for example, dis-test.

Figure 3-23 Test event

Step 3 Click Create.

----End

3.3.5 Processing Data
Perform the following procedure to process simulated stream data:

Step 1 On the DISDemo page, select test event dis-test, and click Test to test the
function, as shown in Figure 3-24.

Figure 3-24 Configuring a test event

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Step 2 After the function is executed successfully, check the logs shown in Figure 3-25.
For all logs of the function, go to the Logs tab page.

Figure 3-25 Function execution result

----End

3.4 Uploading Files Using APIs in FunctionGraph

3.4.1 Introduction

Scenario
Uploading files, such as run logs and web application images, from devices to
cloud servers is a type of common scenarios for websites and applications. These
scenarios can be implemented by using function backends and APIG. This chapter
uses Node.js and Python as examples to describe how to develop a backend
parsing function for obtaining uploaded files.

Constraints
● The file uploaded in a request cannot exceed 6 MB.
● Function logic processing must be within 15 minutes.

3.4.2 Resource Planning

Table 3-8 Resource planning

Product Configuration Example

APIG ● Region: AP-Singapore
● Specification: dedicated gateway

FunctionGraph ● Region: AP-Singapore
● Billing mode: pay-per-use

3.4.3 Procedure
This solution includes the following steps:

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

1. Create a function to receive and parse uploaded files.
2. Buy a dedicated gateway and bind an APIG trigger to the function for E2E

testing.

3.4.3.1 Node.js

Prerequisites
● You have a Huawei Cloud account and have completed real-name

authentication.
● Your Huawei Cloud account is not in arrears and has sufficient balance for the

resources involved in this example.

Procedure

Step 1 Create a function.

1. Log in to the FunctionGraph console, choose Functions > Function List in
the navigation pane, and click Create Function.

2. Select Create from scratch, set the function information, and click Create
Function.
– Function Type: Select Event Function.
– Region: Select AP-Singapore.
– Function Name: Enter a function name, for example, upload-file-1.
– Agency: Select Use no agency.
– Runtime: Select Node.js 14.18.

3. On the Code tab of the function details page, copy the following code to
replace the default code, and click Deploy.
const stream = require("stream");
const Busboy = require("busboy");

exports.handler = async (event, context) => {
 const logger = context.getLogger()
 logger.info("Function start run.");
 if (!("content-type" in event.headers) ||
 !event.headers["content-type"].includes("multipart/form-data")) {
 return {
 'statusCode': 200,
 'headers': {
 'Content-Type': 'application/json'
 },
 'body': 'The request is not in multipart/form-data format.',
 };
 }

 const busboy = Busboy({ headers: event.headers });
 let buf = Buffer.alloc(0);
 busboy.on('file', function (fieldname, file, filename, encoding, mimetype) {
 logger.info('filename:' + JSON.stringify(filename))
 file.on('data', function (data) {
 logger.info('Obtains ' + data.length + ' bytes of data.')
 buf = Buffer.concat([buf, data]);
 });
 file.on('end', function () {
 logger.info('End data reception');
 });
 });

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

 busboy.on('finish', function () {
 // Data is processed here.
 logger.info(buf.toString());
 return {
 'statusCode': 200,
 'headers': {
 'Content-Type': 'application/json'
 },
 'body': 'ok',
 };
 });

 // The APIG trigger encodes data using Base64 by default. The data is decoded here.
 const body = Buffer.from(event.body, "base64");
 var bodyStream = new stream.PassThrough();
 bodyStream.end(body);
 bodyStream.pipe(busboy);
}

Step 2 Configure a dependency.

1. Make dependency: To parse uploaded files with busboy, generate dependency
busboy.zip for Node.js 14.18. If you use another Node.js version, create the
corresponding dependency by referring to Creating a Dependency.

2. Create dependency: In the navigation pane, choose Functions >
Dependencies. Then click Create Dependency, configure the dependency
information, and click OK.

– Name: Enter a dependency name, for example, busboy.

– Code Entry Mode: Select Upload ZIP.

– Runtime: Select Node.js 14.18.

– Upload File: Upload the dependency you made.

3. Add dependency: On the details page of function upload-file-1, click Add at
the bottom of the Code tab. On the Select Dependency page, set Type to
Private, select the busboy dependency, and click OK.

Step 3 Create an APIG trigger.

1. On the details page of function upload-file-1, choose Configuration >
Triggers.

2. Click Create Trigger and select API Gateway (Dedicated) for Trigger Type.

– API Instance: Select a gateway. If no gateway is available, click Create
API Instance.

– API Name: Retain the default name.

– API Group: If no API group is available, click Create API Group to create
one.

– Environment: Select RELEASE.

– Security Authentication: In this example, select None for testing. You
can select a more secure authentication mode for your own services.

– Protocol: Select HTTPS.

– Method: Select ANY.

– Timeout (ms): Retain the default value 5000.

Step 4 Perform E2E testing.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0612.html

The curl tool is used as an example (curl -F is mainly used in Linux). You can also
use other tools such as Postman. Create a file named app.log with any content on
your local host. Example:

start something
run
stop all

Run the following command:

curl -iv {APIG trigger URL} -F upload=@/{Local file path}/app.log

Figure 3-26 Example

On the Monitoring tab of the upload-file-1 function details page, view the file
content in the logs. If needed, you can modify the code to save data to OBS or LTS
or to directly process the data.

----End

3.4.3.2 Python

Prerequisites
● You have a Huawei Cloud account and have completed real-name

authentication.
● Your Huawei Cloud account is not in arrears and has sufficient balance for the

resources involved in this example.

Procedure

Step 1 Create a function.

1. Log in to the FunctionGraph console, choose Functions > Function List in
the navigation pane, and click Create Function.

2. Select Create from scratch, set the function information, and click Create
Function.
– Function Type: Select Event Function.
– Region: Select AP-Singapore.
– Function Name: Enter a function name, for example, upload-file-1.
– Agency: Select Use no agency.
– Runtime: Select Python 3.6.

3. On the Code tab of the function details page, copy the following code to
replace the default code, and click Deploy.
-*- coding: utf-8 -*-

from requests_toolbelt.multipart import decoder
import base64

def handler(event, context):
 context.getLogger().info("Function start run.")

 content_type = ''

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

 if "content-type" in event['headers']:
 content_type = event['headers']['content-type']

 if "multipart/form-data" not in content_type:
 return {
 "statusCode": 200,
 "body": "The request is not in multipart/form-data format.",
 "headers": {
 "Content-Type": "application/json"
 }
 }

 body = event['body']
 # The APIG trigger encodes data using Base64 by default. The data is decoded here.
 raw_data = base64.b64decode(body)
 for part in decoder.MultipartDecoder(raw_data, content_type).parts:
 # Data is processed here.
 context.getLogger().info(part.content)

 return {
 "statusCode": 200,
 "body": "ok",
 "headers": {
 "Content-Type": "application/json"
 }
 }

Step 2 Create an APIG trigger.

1. On the details page of function upload-file-1, choose Configuration >
Triggers.

2. Click Create Trigger and select API Gateway (Dedicated) for Trigger Type.
– API Instance: Select a gateway. If no gateway is available, click Create

API Instance.
– API Name: Retain the default name.
– API Group: If no API group is available, click Create API Group to create

one.
– Environment: Select RELEASE.
– Security Authentication: In this example, select None for testing. You

can select a more secure authentication mode for your own services.
– Protocol: Select HTTPS.
– Method: Select ANY.
– Timeout (ms): Retain the default value 5000.

Step 3 Perform E2E testing.

Create a file named app.log with any content on your local host. Example:
start something
run
stop all

● Take the curl tool as an example (curl -F is mainly used in the Linux
environment). Run the following command:
curl -iv {APIG trigger URL} -F upload=@/{Local file path}/app.log

Figure 3-27 Example

● Take the Postman tool as an example. Set the following parameters and click
Send.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Figure 3-28 Example

Name: Select upload.

Type: Select file.

Value: Click Upload to upload the created app.log file.

On the Monitoring tab of the upload-file-1 function details page, view the file
content in the logs. If needed, you can modify the code to save data to OBS or LTS
or to directly process the data.

Figure 3-29 View logs

----End

3.5 Converting Device Coordinate Data in IoTDA

3.5.1 Introduction

Scenarios

This section demonstrates how to combine FunctionGraph and IoT Device Access
(IoTDA) to process status data reported by IoT devices. IoT devices are managed
on the IoTDA platform. Data generated by the devices is transferred from IoTDA to
trigger the FunctionGraph functions you have compiled for processing.

This combination is suitable for processing device data and storing them to OBS,
structuring and cleansing data and storing them to a database, and sending event
notifications for device status changes.

This best practice focuses on how to combine IoTDA and FunctionGraph. For
details about how to manage devices and report data using IoTDA, see the
documentation of IoTDA. In this chapter, we use IoTDA and FunctionGraph to
convert WGS84 coordinates to GCJ02.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Procedure
● Create an IoTDA instance in IoTDA. (The standard edition is free of charge.

You can use it for testing purposes.)

● Create a function in FunctionGraph.

● Set forwarding rules in IoTDA or create an IoTDA trigger in FunctionGraph.

● Send test messages using forwarding rules.

3.5.2 Preparation
Before creating a forwarding rule, create an IoTDA instance as well as products
and devices. In this best practice, we only create an instance for testing.

Creating an IoTDA Instance

Step 1 Log in to the IoTDA console. In the navigation pane, choose IoTDA Instances.

Step 2 On the right of the IoTDA Instances page, click Buy Instance. The parameter
configuration page is displayed. Set the parameters based on service requirements.

Figure 3-30 Enabling free standard edition

Step 3 Click Create.

----End

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Creating a Function

Step 1 In the left navigation pane of the management console, choose Compute >
FunctionGraph. On the FunctionGraph console, click Create Function.

Step 2 Select Create from scratch. Set Function Type to Event Function, enter a name
(for example, iotdemo) for Function Name, select a runtime (for example,
Python 3.9), and click Create Function.

----End

Creating a Forwarding Rule

Forwarding rules are used to transfer data from IoTDA to trigger specified
functions. For this purpose, you can create forwarding rules in IoTDA or create an
IoTDA trigger in FunctionGraph. Perform the following procedure to create a
forwarding rule:

Step 1 In the navigation pane on the left, choose IoT > IoT Device Access. On the IoTDA
console, click the instance name. On the displayed page, choose Rules > Data
Forwarding, and click Create Rule.

Figure 3-31 Creating a rule

Step 2 Enter basic information and click Create Rule.

NO TE

● Rule Name: Enter a custom rule name.

● Data Source: select Device message.

● Trigger: select device message reporting.

● Resource Space: Retain the default value.

Step 3 To set the forwarding target, click Add, and select FunctionGraph.

Step 4 If this is the first time you select FunctionGraph, authorize access to IoTDA.

Step 5 Select function iotdemo.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Figure 3-32 Adding a forwarding target

Step 6 Start the rule.

----End

3.5.3 Building a Program

Editing a Function Program
Open function iotdemo, copy the following coordinate conversion code to the
function. This code is for testing purposes only and can be modified if needed.

 # -*- coding:utf-8 -*-
import json
import math
from math import pi

def handler(event, context):
 data = event["notify_data"]["body"]
 lat = data["lat"]
 lng = data["lng"]
 print(f" WGS84: ({lng},{lat})")
 gcj_lng, gcj_lat = transform(lng, lat)
 print(f" GCJ02: ({gcj_lng},{gcj_lat})")
 body = {
 "gcj_lng": gcj_lng,
 "gcj_lat": gcj_lat
 }
 return {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps(body),
 "headers": {
 "Content-Type": "application/json"
 }
 }

def transform(lon, lat):
 a = 6378245.0
 ee = 0.00669342162296594323

 dlat = transform_lat(lon - 105.0, lat - 35.0)
 dlon = transform_lon(lon - 105.0, lat - 35.0)

 rad_lat = lat / 180.0 * pi
 magic = math.sin(rad_lat)
 magic = 1 - ee * magic * magic
 sqrt_magic = math.sqrt(magic)

 dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrt_magic) * pi)
 dlon = (dlon * 180.0) / (a / sqrt_magic * math.cos(rad_lat) * pi)

 mg_lon = lon + dlon
 mg_lat = lat + dlat

 return mg_lon, mg_lat

def transform_lon(x, y):

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

 ret = 300.0 + x + 2.0 * y + 0.1 * x * x + \
 0.1 * x * y + 0.1 * math.sqrt(math.fabs(x))
 ret += (20.0 * math.sin(6.0 * pi * x) +
 20.0 * math.sin(2.0 * pi * x)) * 2.0 / 3.0
 ret += (20.0 * math.sin(pi * x) +
 40.0 * math.sin(pi / 3.0 * x)) * 2.0 / 3.0
 ret += (150.0 * math.sin(pi / 12.0 * x) +
 300.0 * math.sin(pi / 30.0 * x)) * 2.0 / 3.0
return ret

def transform_lat(x, y):
 ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + \
 0.1 * x * y + 0.2 * math.sqrt(math.fabs(x))
 ret += (20.0 * math.sin(6.0 * pi * x) +
 20.0 * math.sin(2.0 * pi * x)) * 2.0 / 3.0
 ret += (20.0 * math.sin(pi * y) +
 40.0 * math.sin(pi / 3.0 * y)) * 2.0 / 3.0
 ret += (160.0 * math.sin(pi / 12.0 * y) +
 320 * math.sin(pi / 30.0 * y)) * 2.0 / 3.0
 return ret

Online Joint Commissioning with IoTDA

Step 1 Log in to the IoTDA console and click an instance name. In the navigation pane,
choose Rules & > Data Forwarding. In the Rule List, click View on the right of
the target rule name. The Data Forwarding Rule Details page is displayed.

Step 2 Select Set Forwarding Target and click Test on the right of the forwarding target
to edit the test data.

Figure 3-33 Testing the forwarding rule

Step 3 Enter the test data and click Connectivity Test.
{
 "resource": "device.message",
 "event": "report",
 "event_time": "string",
 "notify_data": {
 "header": {
 "app_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "device_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "node_id": "ABC123456789",
 "product_id": "ABC123456789",
 "gateway_id": "d4922d8a-6c8e-4396-852c-164aefa6638f",
 "tags": [
 {
 "tag_key": "testTagName",
 "tag_value": "testTagValue"
 }
]
 },
 "body": {
 "lat": 92.64763932844794,
 "lng": 35.25202546134364
 }
 }
}

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Figure 3-34 Connectivity test result

Step 4 Go to the FunctionGraph console, choose Monitoring > Logs, and click the
request ID in blue to view logs.

Figure 3-35 Viewing logs

Figure 3-36 Viewing request details

To invoke other systems, persist data in OBS, or achieve other purposes, modify
the program.

----End

3.6 Using FunctionGraph to Encrypt and Decrypt Files
in OBS

3.6.1 Introduction
Huawei Cloud Data Encryption Worksop (DEW) uses the hardware security
module (HSM) to protect your keys. All of your keys are protected by the root key
in HSM. DEW provides access control and log tracing for all operations on keys,
and records key uses to meet audit and compliance requirements. You can buy a
dedicated HSM instance to encrypt your service systems (including sensitive data,
financial payments, and electronic bills). It encrypts the sensitive data of your
enterprise (contracts, transactions, and records) and of users (IDs and mobile
numbers). This prevents data breaches and unauthorized access or data tampering

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

caused by network attacks and data reduction. This chapter describes how to use
FunctionGraph and DEW to encrypt and decrypt files.

Scenarios
● Upload files to a specified OBS bucket.
● Encrypt and decrypt each uploaded file.
● Upload the processed files to another OBS bucket.

NO TE

1. This tutorial uses two different OBS buckets.
2. The function you create must be in the same region (default region recommended)

as the OBS buckets.

Procedure
● Create two buckets on the OBS console.
● Create a function and set the OBS Application Service trigger. (OBS

Application Service trigger is available only in CN North-Beijing4, CN
North-Ulanqab1, and CN East-Shanghai1.)

● Upload files to one of the buckets.
● Trigger the function to encrypt and decrypt the files.
● The function uploads the processed files to the other bucket.

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:
1. Two OBS buckets (for storing uploaded and processed files respectively)
2. A file encryption/decryption function
3. An OBS Application Service trigger, which is used to associate a function with an

OBS bucket.

3.6.2 Preparation
Create two OBS buckets to store uploaded and encrypted/decrypted files,
respectively.

Create an agency to delegate FunctionGraph to access OBS resources.

Creating OBS Buckets

CA UTION

● The function and the source and destination buckets for storing files must be in
the same region.

● Use two different OBS buckets. If only one bucket is used, the function will be
executed infinitely. (When a file is uploaded to the bucket, the function is
triggered to process the file and store the processed file into the bucket again.
In this way, the function executes endlessly.)

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Procedure

Step 1 Log in to the OBS console, and click Create Bucket.

Step 2 On the Create Bucket page, set the bucket information.
● For Region, select a region.
● For Data Redundancy Policy, select Single-AZ storage.
● For Bucket Name: Enter a custom bucket name, for example, dew-bucket-

input.
● For Default Storage Class, select Standard.
● For Bucket Policies, select Private.
● For Direct Reading, select Disable.

Click Create Now.

Step 3 Repeat Step 2 to create the destination bucket.

Name the destination bucket dew-bucket-output, and select the same region and
storage class as those of the source bucket.

Step 4 View dew-bucket-input and dew-bucket-output in the bucket list.

----End

Creating a DEW Key

CA UTION

● The DEW key and function must be in the same region.

Procedure

Step 1 In the left navigation pane of the management console, choose Security &
Compliance > Data Encryption Workshop to go to the DEW console. Then click
Create Key.

Step 2 On the Create Key page, click OK.

Step 3 Record the master key ID.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name: Enter an agency name, for example, serverless_trust.
● For Agency Type, select Cloud service.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://auth.huaweicloud.com/authui/login.html?service=https%3A%2F%2Fconsole-intl.huaweicloud.com%2Fconsole%2F%3Flocale%3Den-us#/login

● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.
● For Description, enter a description.

Step 4 Click Next. On the Select Policy/Role page, select OBS Administrator and DEW
KeypairFullAccess.

Step 5 Click Next, select an authorization scope that meets your service requirements,
and click OK.

----End

3.6.3 Building a Program
This section provides a file encryption/decryption package. You can create a
function with the sample code in this package.

Creating a Deployment Package
This example uses a Java 8 function to encrypt/decrypt files. For details about
function development, see Developing Functions in Java. Figure 3-37 shows the
sample code directory. The service code is not described.

Figure 3-37 Sample code directory

FileEncryptAndDecrypt is the function execution entry point. The entry function
in FileEncryptAndDecrypt contains the following code:
package com.huawei.kms;
import com.huawei.services.runtime.Context;

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0430.html

import com.huawei.services.runtime.entity.s3obs.S3ObsTriggerEvent;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.kms.v1.KmsClient;
import com.huaweicloud.sdk.kms.v1.model.*;
import com.obs.services.ObsClient;
import com.obs.services.exception.ObsException;
import com.obs.services.model.ObsObject;
import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.io.*;
import java.nio.file.Files;
import java.security.SecureRandom;
public class FileEncryptAndDecrypt {
 private String objectKey;
 private String inputPath;
 private String outputPath;
 public String encrypt(S3ObsTriggerEvent event, Context context){
 objectKey = event.getObjectKey();
 inputPath = "/tmp/" + objectKey;
 outputPath = "/tmp/" + objectKey + ".encrypt";
 // Initialize OBS class.
 obsClientHandler client = new obsClientHandler();
 client.init(context);
 client.setObjectInfo(objectKey, inputPath, outputPath);
 // Download files from the specified OBS bucket.
 client.downloadFile();
 // Initialize KMS class.
 KmsClientHandler kms = new KmsClientHandler();
 kms.init(context);
 kms.setPath(inputPath, outputPath);
 // Encrypt files.
 kms.encryptFile();
 // Upload files.
 client.uploadFile();
 return "ok";
 }
 public String decrypt(S3ObsTriggerEvent event, Context context){
 objectKey = event.getObjectKey();
 inputPath = "/tmp/" + objectKey;
 outputPath = "/tmp/" + objectKey + ".decrypt";
 // Initialize OBS class.
 obsClientHandler client = new obsClientHandler();
 client.init(context);
 client.setObjectInfo(objectKey, inputPath, outputPath);
 // Download files from the specified OBS bucket.
 client.downloadFile();
 // Initialize KMS class.
 KmsClientHandler kms = new KmsClientHandler();
 kms.init(context);
 kms.setPath(inputPath, outputPath);
 // Encrypt files.
 kms.decryptFile();
 // Upload files.
 client.uploadFile();
 return "ok";
 }
 static class KmsClientHandler {
 // DEW API version. Currently fixed to v1.0.
 private static final String KMS_INTERFACE_VERSION = "v1.0";
 private static final String AES_KEY_BIT_LENGTH = "256";
 private static final String AES_KEY_BYTE_LENGTH = "32";
 private static final String AES_ALG = "AES/GCM/PKCS5Padding";
 private static final String AES_FLAG = "AES";
 private static final int GCM_TAG_LENGTH = 16;
 private static final int GCM_IV_LENGTH = 12;
 private String ACCESS_KEY;
 private String SECRET_ACCESS_KEY;
 private String SECURITY_TOKEN;

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

 private String PROJECT_ID;
 private String KMS_ENDPOINT;
 private String keyId;
 private String cipherText;
 private String inputPath;
 private String outputPath;
 private Context context;
 private KmsClient kmsClient = null;
 void init(Context context) {
 this.context = context;
 }
 void initKmsClient() {
 if (kmsClient == null) {
 ACCESS_KEY = context.getSecurityAccessKey();
 SECRET_ACCESS_KEY = context.SecuritygetSecretKey();
 SECURITY_TOKEN = context.getSecurityToken();
 PROJECT_ID = context.getProjectID();
 KMS_ENDPOINT = context.getUserData("kms_endpoint");
 keyId = context.getUserData("kms_key_id");
 cipherText = context.getUserData("cipher_text");
 final BasicCredentials auth = new
BasicCredentials().withAk(ACCESS_KEY).withSk(SECRET_ACCESS_KEY).withSecurityToken(SECURITY_TOKEN).
withProjectId(PROJECT_ID);
 kmsClient = kmsClient.newBuilder().withCredential(auth).withEndpoint(KMS_ENDPOINT).build();
 }
 }
 byte[] getEncryptPlainKey() {
 final CreateDatakeyRequest createDatakeyRequest = new
CreateDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)
 .withBody(new
CreateDatakeyRequestBody().withKeyId(keyId).withDatakeyLength(AES_KEY_BIT_LENGTH));
 final CreateDatakeyResponse createDatakeyResponse =
kmsClient.createDatakey(createDatakeyRequest);
 final String cipherText = createDatakeyResponse.getCipherText();
 return hexToBytes(createDatakeyResponse.getPlainText());
 }
 byte[] hexToBytes(String hexString) {
 final int stringLength = hexString.length();
 assert stringLength > 0;
 final byte[] result = new byte[stringLength / 2];
 int j = 0;
 for (int i = 0; i < stringLength; i += 2) {
 result[j++] = (byte) Integer.parseInt(hexString.substring(i, i + 2), 16);
 }
 return result;
 }
 public void setPath(String inputPath, String outputPath) {
 this.inputPath = inputPath;
 this.outputPath = outputPath;
 }
 public void encryptFile() {
 final File outEncryptFile = new File(outputPath);
 final File inFile = new File(inputPath);
 final byte[] iv = new byte[GCM_IV_LENGTH];
 final SecureRandom secureRandom = new SecureRandom();
 secureRandom.nextBytes(iv);
 doFileFinal(Cipher.ENCRYPT_MODE, inFile, outEncryptFile, getEncryptPlainKey(), iv);
 }
 byte[] getDecryptPlainKey() {
final CreateDatakeyRequest createDatakeyRequest = new
CreateDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)
 .withBody(new
CreateDatakeyRequestBody().withKeyId(keyId).withDatakeyLength(AES_KEY_BIT_LENGTH));
// Create a data key.
final CreateDatakeyResponse createDatakeyResponse = kmsClient.createDatakey(createDatakeyRequest);
 final DecryptDatakeyRequest decryptDatakeyRequest = new
DecryptDatakeyRequest().withVersionId(KMS_INTERFACE_VERSION)
 .withBody(new
DecryptDatakeyRequestBody().withKeyId(keyId).withCipherText(createDatakeyResponse.getCipherText()

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

).withDatakeyCipherLength(AES_KEY_BYTE_LENGTH));
 return hexToBytes(kmsClient.decryptDatakey(decryptDatakeyRequest).getDataKey());
 }
 public void decryptFile() {
 final File outEncryptFile = new File(outputPath);
 final File inFile = new File(inputPath);
 final byte[] iv = new byte[GCM_IV_LENGTH];
 final SecureRandom secureRandom = new SecureRandom();
 secureRandom.nextBytes(iv);
 doFileFinal(Cipher.DECRYPT_MODE, inFile, outEncryptFile, getDecryptPlainKey(), iv);
 }
 /** // * Encrypt/Decrypt files. // * // * @param cipherMode Encryption mode.
Options: Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE. // * @param infile Files before
encryption/decryption. // * @param outFile Files after encryption/decryption. // *
@param keyPlain Plaintext key // * @param iv Initialize vector. // */ void
doFileFinal(int cipherMode, File infile, File outFile, byte[] keyPlain, byte[] iv) {
 try (BufferedInputStream bis = new BufferedInputStream(Files.newInputStream(infile.toPath()));
 BufferedOutputStream bos = new
BufferedOutputStream(Files.newOutputStream(outFile.toPath()))) {
 final byte[] bytIn = new byte[(int) infile.length()];
 final int fileLength = bis.read(bytIn);
 assert fileLength > 0;
 final SecretKeySpec secretKeySpec = new SecretKeySpec(keyPlain, AES_FLAG);
 final Cipher cipher = Cipher.getInstance(AES_ALG);
 final GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(GCM_TAG_LENGTH *
Byte.SIZE, iv);
 cipher.init(cipherMode, secretKeySpec, gcmParameterSpec);
 final byte[] bytOut = cipher.doFinal(bytIn);
 bos.write(bytOut);
 } catch (Exception e) {
 throw new RuntimeException(e.getMessage());
 }
 }
 }
 static class obsClientHandler {
 private ObsClient obsClient = null;
 private String inputBucketName;
 private String outputBucketName;
 private String objectKey;
 private Context context;
 private String localInPath;
 private String localOutPath;
 public void init(Context context) {
 this.context = context;
 }
 void initObsclient() {
 if (obsClient == null) {
 inputBucketName = context.getUserData("input_bucket");
 outputBucketName = context.getUserData("output_bucket");
 String SECURITY_ACCESS_KEY = context.getSecurityAccessKey();
 String SECURITY_SECRET_KEY = context.getSecuritySecretKey();
 String SECURITY_TOKEN = context.getSecurityToken();
 String OBS_ENDPOINT = context.getUserData("obs_endpoint");
 obsClient = new ObsClient(SECURITY_ACCESS_KEY, SECURITY_SECRET_KEY, SECURITY_TOKEN,
OBS_ENDPOINT);
 }
 }
 public void setObjectInfo(String objectKey, String inPath, String outPath) {
 this.objectKey = objectKey;
 localInPath = inPath;
 localOutPath = outPath;
 }
 public void downloadFile() {
 initObsclient();
 try {
 ObsObject obsObject = obsClient.getObject(inputBucketName, objectKey);
 InputStream inputStream = obsObject.getObjectContent();
 byte[] b = new byte[1024];
 int len;

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

 FileOutputStream fileOutputStream = new FileOutputStream("/tmp/" + objectKey);
 while ((len = inputStream.read(b)) != -1) {
 fileOutputStream.write(b);
 }
 inputStream.close();
 fileOutputStream.close();
 } catch (ObsException ex) {
 ex.printStackTrace();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
 public void uploadFile() {
 try {
 // Local path of the files to upload. File names must be specified.
 FileInputStream fis = new FileInputStream(new File("/tmp/" + objectKey + ".encrypt"));
 obsClient.putObject(outputBucketName, objectKey, fis);
 fis.close();
 } catch (FileNotFoundException e) {
 throw new RuntimeException(e);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
 }
}

Creating a Function
When creating a function, specify an agency with OBS and DEW access
permissions so that FunctionGraph can invoke these two services.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Click Create from scratch and configure the function information.

After setting the basic information, click Create.

● For Function Type, select Event Function.
● For Function Name: Enter a function name, for example, fss_examples_dew.
● For Agency, select serverless_trust.
● For Runtime, select Java 8.

Step 4 On the details page of function fss_examples_dew, configure the following
information:

1. On the Code tab, choose Upload > Local JAR, upload the compiled sample
code JAR package, and click OK.

2. Choose Configuration > Basic Settings, set the following parameters, and
click Save.
– For Memory, select 128.
– For Execution Timeout, enter 3.
– For Handler, enter com.huawei.kms.FileEncryptAndDecrypt.encrypt.
– For App, retain the default value default.
– Description: Enter File encryption and decryption.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

3. Choose Configuration > Environment Variables, set environment variables,
and click Save.
dew_endpoint: DEW endpoint
dew_key_id: Master key ID
input_bucket: OBS bucket for storing uploaded files
output_bucket: OBS bucket for storing encrypted/decrypted files
obs_endpoint: OBS endpoint

Table 3-9 Environment variables

Environment Variable Description

dew_endpoint DEW endpoint. To obtain the DEW
endpoint, see Regions and
Endpoints.

dew_key_id User master key ID.

input_bucket OBS bucket for storing input files.

output_bucket OBS bucket for storing encrypted
and uploaded files.

obs_endpoint OBS endpoint. To obtain the OBS
endpoint, see Regions and
Endpoints.

----End

3.6.4 Adding an Event Source
After creating the OBS buckets and function, add an event source to the function
by creating an OBS Application Service trigger. Perform the following procedure:

Step 1 On the fss_examples_dew page, choose Configuration > Triggers and click
Create Trigger.

Step 2 Select OBS Application Service for Trigger Type, and set the trigger information,
as shown in Figure 3-38.

Select the created dew-bucket-input bucket.

Select Create or override bucket objects via UI or Put request or Create or
override bucket objects via Post request. for Event Type.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://developer.huaweicloud.com/intl/en-us/endpoint?DEW
https://developer.huaweicloud.com/intl/en-us/endpoint?DEW
https://developer.huaweicloud.com/intl/en-us/endpoint?OBS
https://developer.huaweicloud.com/intl/en-us/endpoint?OBS

Figure 3-38 Creating an OBS Application Service trigger

Step 3 Click OK.

NO TE

After the OBS Application Service trigger is created, when a file is uploaded or updated to
bucket dew-bucket-input, an event is generated to trigger the function.

----End

3.6.5 Processing Files
When a file is uploaded and updated to bucket dew-bucket-input, an event is
generated to trigger the function. The function encrypts and decrypts the file and
stores the processed one into bucket dew-bucket-output.

Uploading a File to Generate an Event
Log in to the OBS console, go to the object page of the dew-bucket-input
bucket, and upload the image.png file, as shown in Figure 3-39.

Figure 3-39 Uploading a file

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://console-intl.huaweicloud.com/obs/?locale=en-us

Triggering the Function
After the file is uploaded to bucket dew-bucket-input, OBS generates an event to
trigger the file encryption/decryption function. The function encrypts/decrypts the
file and stores the processed one into bucket dew-bucket-output. View the run
logs of fss_examples_dew on the Logs tab page.

The Objects page of the bucket dew-bucket-output displays the processed file
image.encrypt.png, as shown in Figure 3-40. In the Operation column, click
Download to download the file.

Figure 3-40 Output file

3.7 Identifying Abnormal Service Logs in LTS and
Storing Them in OBS

3.7.1 Introduction
FunctionGraph and Log Tank Service (LTS) can be used to process cloud logs, push
alarm messages, and store logs in a specified Object Storage Service (OBS) bucket.

Scenarios
Quickly collect, process, and convert task logs of servers, such as ECSs, through
Log Tank Service (LTS).

Obtain log data based on an LTS trigger created on FunctionGraph, analyze and
process key information in the logs by using a customized function, and then filter
alarm logs.

Use SMN to push alarm messages to service personnel by SMS message or email.

Store processed log data in a specified OBS bucket for subsequent processing. The
processing workflow is shown in Figure 3-41.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Figure 3-41 Processing workflow

Values
● Quickly collects and converts logs through LTS.
● Processes and analyzes data in response to log events in a serverless

architecture, which features automatic scaling, no operation and
maintenance, and pay-per-use billing.

● Sends alarm notifications through SMN.

Extended Applications
You can use FunctionGraph and LTS in multiple scenarios. For example, you can
create a timer trigger to periodically analyze and process log data in an OBS
bucket.

3.7.2 Preparation

Collecting and Storing Logs
● Create a log group, for example, polo.guoying on the LTS console. For details,

see Creating a Log Group.
● Create a log stream, for example, lts-topic-gfz3 on the LTS console. For

details, see Creating a Log Stream.
● Configure an agent to collect logs from servers, such as ECSs, to a specified

log group. For details, see Installing the ICAgent.

Pushing Alarm Messages
● Create a topic named fss_test on the SMN console. For details, see Creating

a Topic.
● Add subscriptions to the fss_test topic to push alarm messages. For details,

see Adding a Subscription.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://support.huaweicloud.com/intl/en-us/qs-lts/lts_08301.html
https://support.huaweicloud.com/intl/en-us/qs-lts/lts_08301.html
https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_02_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/en-us_topic_0043961402.html

● Define an environment variable named SMN_Topic with value fss_test to
push alarm messages to the subscription endpoints under the fss_test topic.

NO TE

Alarm messages of a subscribed topic can be pushed through email, SMS messages,
and HTTP/HTTPS.

In this example, when log events trigger the specified function through an LTS trigger,
the function filters alarm logs and pushes alarm message to the subscription
endpoints.

Processing Cloud Data
Create an OBS bucket and object, and configure event notifications.

1. Create a bucket and an object on the OBS console, as shown in Figure 3-42.
For details, see Creating a Bucket.

Figure 3-42 Creating a bucket

NO TE

Name the bucket as logstore and the object as log.txt to store log data.

Creating an Agency
1. Log in to the Identity and Access Management (IAM) console.
2. On the IAM console, choose Agencies from the navigation pane, and click

Create Agency in the upper right corner.

Figure 3-43 Creating an agency

3. Configure the agency.
– For Agency Name: Enter an agency name, for example, LtsOperation.
– For Agency Type, select Cloud service.
– For Cloud Service, select FunctionGraph.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045853662.html

– For Validity Period, select Unlimited.

– For Description: Enter the description.

4. Click Next. On the displayed page, search for LTS Administrator and SMN
Administrator in the search box on the right and select them.

NO TE

LTS Administrator depends on Tenant Guest. When you select the former, the latter
will also be selected.

5. Click Next and select the application scope of the permissions based on
service requirements.

3.7.3 Building a Program
Download fss_examples_logstore_warning.zip to create an alarm log extraction
function from scratch.

Creating a Function

Create a function by uploading the sample code package to extract logs. Select
the Python 2.7 runtime and the agency LtsOperation created in Creating an
Agency. For details about how to create a function, see Creating an Event
Function.

This function performs Base64 decoding on received log event data, extracts alarm
logs containing keyword WRN, WARN, ERR, or ERROR, and then stores the
extracted logs in the specified OBS bucket. Set log extraction conditions based on
the content of your service logs.

Setting Environment Variables

On the Configuration tab page of the preceding function, set environment
variables to pass the bucket address, bucket name, and object name, as shown in
Table 3-10.

Table 3-10 Environment variables

Environment
Variable

Description

obs_address OBS endpoint. To obtain the OBS endpoint, see Regions
and Endpoints.

obs_store_bucket Name of the target bucket for storing logs.

obs_store_objName Name of the target file for storing logs.

SMN_Topic SMN topic.

region Name of your region. To obtain the region name, see
Regions and Endpoints.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_logstore_warning.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_logstore_warning.zip
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html
https://developer.huaweicloud.com/intl/en-us/endpoint?OBS
https://developer.huaweicloud.com/intl/en-us/endpoint?OBS
https://developer.huaweicloud.com/intl/en-us/endpoint?FunctionGraph

Set the environment variables by following the procedure in Environment
Variables.

3.7.4 Adding an Event Source

Creating an LTS trigger

Create an LTS trigger by using the log group and log topic created in Preparation.
Configure the trigger information according to Figure 3-44.

When the accumulated log size or log retention period meets a specified
threshold, LTS log data is consumed, which triggers the function associated with
the log group.

Figure 3-44 Creating an LTS trigger

3.7.5 Processing Log Data

Handling Alarms

Email notifications will be received from SMN if alarm logs containing keyword
WRN, WARN, ERR, or ERROR are generated, as shown in Figure 3-45. You can
also view details of the alarm logs by opening the log.txt file in the specified
bucket, as shown in Figure 3-46.

Figure 3-45 Email notification

Figure 3-46 Alarm log details

On the Monitoring tab page of the function, check the number of invocations, as
shown in Figure 3-47.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html

Figure 3-47 Function metrics

3.8 Using FunctionGraph to Filter Logs in LTS in Real
Time

3.8.1 Introduction
This practice shows how to use FunctionGraph and LTS to process logs and
transfer messages to LTS.

Scenario
Quickly collect, process, and convert task logs of servers, such as ECSs, through
Log Tank Service (LTS).

Obtain log data using an LTS trigger created on FunctionGraph, analyze and
process key information in the logs by using a customized function, and then
transfer the filtered logs to another log stream. Figure 3-48 shows this process.

Figure 3-48 Processing workflow

Benefits
● Quickly collect and convert logs with LTS.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

● Process and analyze data by using the event triggering and auto scaling
features of serverless function computing. No O&M is involved, and resources
are pay-per-use.

● Transfer filtered logs to another log stream. The original log stream is
automatically deleted at the expiration time you set, reducing log storage
costs.

Extended Applications
Use FunctionGraph and LTS to periodically analyze and process log data with a
timer trigger to delete redundant logs and save space and costs.

3.8.2 Preparation
Download lts_cleanse.zip (including code file write_log.py of function A, code file
lts_cleanse.py of function B, and dependency huaweicloudsdklts) and
lts_cleanse.zip.sha256 to filter logs in real time.

Collecting and Storing Logs
● Create two log groups, for example, test1206 and test-1121, on the LTS

console. For details, see Creating a Log Group.
● Create two log streams, for example, test-206 and test-1121, on the LTS

console. For details, see Creating a Log Stream.
● Create function A to write logs to test-206. For the sample code of this

function, see the write_log.py file.
● Create function B with an LTS trigger to receive logs from test-206, process

the logs, and write the result to test-1121. For the sample code of this
function, see the lts_cleanse.py file.

● Configure an agent to collect logs from servers, such as ECSs, to a specified
log group. For details, see Installing the ICAgent.

Figure 3-49 Flowchart

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/lts_cleanse.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/lts_cleanse.zip.sha256
https://support.huaweicloud.com/intl/en-us/qs-lts/lts_08301.html
https://support.huaweicloud.com/intl/en-us/qs-lts/lts_08301.html
https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_02_0013.html

Creating an Agency

Step 1 Log in to the IAM console.

Step 2 Choose Agencies from the navigation pane, and click Create Agency in the upper
right corner, as shown in Figure 3-50.

Figure 3-50 Creating an agency

Step 3 Configure the agency.
● Agency Name: Enter an agency name, for example, LtsOperation.
● Agency Type: Select Cloud service.
● Cloud Service: Select FunctionGraph.
● Validity Period: Select Unlimited.
● Description: Describe the agency.

Step 4 Click Next. On the displayed page, search for LTS Administrator in the search box
on the right and select it.

NO TE

LTS Administrator depends on Tenant Guest. When you select the former, the latter will
also be selected.

Step 5 Click Next, select an authorization scope that meets your service requirements,
and click OK.

----End

3.8.3 Building a Program

Prerequisites
(1) The IP address in the two functions is an access point of LTS. To obtain this IP
address, perform the following steps:

1. Log in to the LTS console. In the navigation pane on the left, choose Host
Management > Hosts.

2. In the upper right corner of the page, click Install ICAgent.
3. Obtain the access point IP address in the Install ICAgent window.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Figure 3-51 Access point IP address

2. Obtain the values of log_group_id and log_stream_id in the functions. For
details, see Obtaining the Account ID, Project ID, Log Group ID, and Log
Stream ID.

3. Create the LTS dependency required by function B. For details, see How Do I
Create a Dependency on the FunctionGraph Console? and How Do I Add a
Dependency to a Function? You can run the pip install huaweicloudsdklts
command to create the dependency. The sample code contains the
huaweicloudsdklts dependency for Python 3.9.

Creating a Function
Create a log extraction function by uploading the sample code package. Select the
Python 3.9 runtime and the agency LtsOperation created in Creating an Agency.
For details about how to create a function, see Creating an Event Function.

Create function A. For the sample code of this function, see the write_log.py file.
In the code of function A, replace host, log_group_id, and log_stream_id with the
access point and the IDs of log group test-1206 and log stream test-206, as
shown in Figure 3-52.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://support.huaweicloud.com/intl/en-us/api-lts/lts_api_0006.html
https://support.huaweicloud.com/intl/en-us/api-lts/lts_api_0006.html
https://support.huaweicloud.com/intl/en-us/functiongraph_faq/functiongraph_03_0888.html
https://support.huaweicloud.com/intl/en-us/functiongraph_faq/functiongraph_03_0888.html
https://support.huaweicloud.com/intl/en-us/functiongraph_faq/functiongraph_03_0882.html
https://support.huaweicloud.com/intl/en-us/functiongraph_faq/functiongraph_03_0882.html
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/lts_cleanse.zip
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html

Figure 3-52 write_log.py

Create function B. For the sample code of this function, see the lts_cleanse.py file.
In the code of function B, replace host, log_group_id, and log_stream_id with the
access point and the IDs of log group test-1121 and log stream test-1121, and
add the huaweicloudsdklts dependency to this function, as shown in Figure 3-53
and Figure 3-54.

Figure 3-53 lts_cleanse.py

Figure 3-54 Adding a dependency for function B

This function performs Base64 decoding on received log event data, extracts alarm
logs containing keyword WRN, WARN, ERR, or ERROR, and then stores the
extracted logs to a specified LTS log stream. Set log extraction conditions based on
the content of your service logs.

3.8.4 Adding an Event Source

Creating an LTS trigger

Create an LTS trigger by using the log group and log stream created in
Preparation, and configure the trigger information according to Figure 3-55.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Figure 3-55 Creating an LTS trigger

When the accumulated log size or log retention period meets a specified
threshold, LTS log data will be consumed, which will trigger the function
associated with the log group.

3.8.5 Processing Results

Handling Alarms
Filter alarm logs containing keyword WRN, WARN, ERR, or ERROR, and transfer
them to a specified log stream. Figure 3-56 and Figure 3-57 show the real-time
logs before and after filtering, respectively.

Figure 3-56 Logs before filtering

Figure 3-57 Logs after filtering

Check the function invocation by viewing the metrics, as shown in the following
figures.

Figure 3-58 Function metrics (1)

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Figure 3-59 Function metrics (2)

Figure 3-60 Function metrics (3)

3.9 Using FunctionGraph to Rotate Images Stored in
OBS

3.9.1 Introduction
This best practice guides you through OBS data processing by using
FunctionGraph. (The function flow feature is available in CN East-Shanghai1 and
AP-Singapore.)

Scenarios

Use a function flow to automatically process data in OBS, such as video analysis,
image transcoding, and video frame capturing.

● Upload images to a specified OBS bucket.
● Orchestrate functions to download images from OBS for transcoding and

return the transcoded images to the client using a stream.

NO TE

The function you create must be in the same region (default region recommended) as
the OBS bucket.

Procedure
● Create a bucket on the OBS console.
● Upload images to the bucket.
● Create a function.
● Create a function flow and orchestrate functions.
● Trigger the function to transcode images.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:

1. One OBS bucket (for storing uploaded images)

2. One image processing function (test-rotate)

3. One function flow (test-rotate-workflow)

3.9.2 Preparation
Create an OBS bucket to store uploaded images.

Then create an agency to delegate FunctionGraph to access OBS resources.

Creating an OBS bucket

CA UTION

The bucket and function must be in the same region.

Procedure

Step 1 In the left navigation pane of the management console, choose Storage > Object
Storage Service to go to the OBS console, and click Create Bucket.

On the Create Bucket page, set the bucket information.

● For Region, select a region.
● For Bucket Name: Enter a custom bucket name, for example, your-bucket-

input.
● For Data Redundancy Policy, select Single-AZ storage.
● For Default Storage Class, select Standard.
● For Bucket Policies, select Private.
● For Default Encryption, select Disable.
● For Direct Reading, select Disable.

Retain the default values for other parameters and click Create Now.

View your-bucket-input in the bucket list.

----End

Creating an Agency

Step 1 In the left navigation pane of the management console, choose Management &
Governance > Identity and Access Management to go to the IAM console. Then
choose Agencies in the navigation pane.

On the Agencies page, click Create Agency.

Set the agency information.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://console-intl.huaweicloud.com/obs/?locale=en-us#/

● For Agency Name: Enter an agency name, for example, serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.
● For Description, enter a description.

Click Next. On the Select Policy/Role page, select OBS Administrator.

Step 2 Click Next, select an authorization scope that meets your service requirements,
and click OK.

----End

3.9.3 Building a Program
This section provides the sample code for image rotation.

Creating a Deployment Package
This example uses a Go function to rotate images. For details about function
development, see the FunctionGraph Developer Guide. Figure 3-61 shows the
sample code directory. The service code is not described.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Figure 3-61 Sample code directory

Creating a Function
When creating a function, specify an agency with OBS access permissions so that
FunctionGraph can invoke the OBS service.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Click Create Function.

Set the function information.

After setting the basic information, click Create.

● For Function Type, select Event Function.
● For Function Name: Enter a function name, for example, test-rotate.
● For Agency, select serverless_trust.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

● For Runtime, select Go 1.x.
On the details page of function test-rotate, configure the following
information:

a. On the Code tab, choose Upload > Local ZIP, upload the binary file go-
test.zip of the sample code.

b. Choose Configuration > Basic Settings, set the following parameters,
and click Save.

▪ For Memory, select 256.

▪ For Execution Timeout, enter 40.

▪ For Handler, retain the default value index.handler.

▪ For App, retain the default value default.

▪ For Description, enter Image rotation.

c. Choose Configuration > Environment Variables, set environment
variables, and click Save.
bucket: the bucket parameter defined in handler.go for pulling images.
Set the value to your-bucket-output, the bucket created for storing
images.
object: the image name parameter defined in handler.go. Set the value
to your-picture-name.
obsAddress: the bucket address parameter defined in handler.go for
pulling images. Set the value to obs.region.myhuaweicloud.com.

----End

Table 3-11 Environment variable description

Environment Variable Description

bucket OBS bucket parameters defined in the
handler.go file for pulling images.

object The image name parameter defined in
handler.go.

obsAddress The bucket address parameter defined
in handler.go for pulling images. The
value of obsAddress is in the format
of obs.{region}.myhuaweicloud.com.
For details about the value of region,
see Regions and Endpoints.

---- End

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/go-test.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/go-test.zip
https://developer.huaweicloud.com/intl/en-us/endpoint?FunctionGraph

Creating a Flow

Step 1 Return to the FunctionGraph console. Then choose Flows in the navigation pane.

Click Create next to Express Flow.

Figure 3-62 Creating an express flow

Step 2 Drag a function node and click it to configure parameters.
● App: Retain the default value default.
● Function: Select the test-rotate function created in the previous step.
● Version: Retain the default value latest.
● Retain the default values for other parameters.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Figure 3-63 Configuring function node

Click OK after the parameters are configured.

Step 3 After the function flow node is created, click Save in the upper right corner,
configure the following basic information, and click OK.
● Name: test-rotate-workflow.
● Enterprise Project: Retain the default value default.
● Logs: Retain the default value ALL.

Retain the default values for other parameters.

Figure 3-64 Saving a flow

----End

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

3.9.4 Processing Images
Upload an image to bucket your-bucket-input, and use a tool to simulate a client
and trigger the function flow. The image is rotated by 180°, and then returned to
the client as stream data.

Uploading an Image
Log in to the OBS console, go to the object page of the your-bucket-input
bucket, and upload the image.jpeg image, as shown in Figure 3-65. Figure 3-66
shows the uploaded image.

Figure 3-65 Example

Figure 3-66 Uploaded image

Using Postman to Trigger the Function Flow

The following figure shows the image saved from the byte stream.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

https://console-intl.huaweicloud.com/obs/?locale=en-us

3.10 Using FunctionGraph to Compress and Watermark
Images

This section describes how to use FunctionGraph to process large stream files.
Create an express flow that meets your service requirements.

Background and Value
Serverless workflows feature orchestration, state management, persistence,
visualized monitoring, error handling, and cloud service integration. They are
suitable for many scenarios, including:

● Complex, abstract services, such as order management and CRM
● Services that require automatic interruption and recovery when manual

intervention is involved among tasks, such as manual review and pipeline
deployment

● Services that require manual interruption and recovery, such as data backup
and restoration

● Task status monitoring
● Stream processing, such as log analysis and image/video processing

Nowadays, most serverless workflow platforms focus more on control process
orchestration rather than data flow orchestration and transmission. In
scenarios similar to , the data flow is simple and well supported by various
platforms. However, they do not have a solution for ultra-large data stream
processing scenarios, such as file transcoding. For these scenarios, Huawei
Cloud FunctionGraph provides the serverless streaming solution, which
responds to process files within milliseconds.

Principles
Huawei Cloud FunctionGraph provides the serverless streaming solution for file
processing via orchestration. Steps are driven by data flows, which is easier to
understand. This section uses image processing as an example to describe how
this solution works.

A workflow system needs to process two parts:

● Control flow: Controls the flow between steps and the execution of serverless
functions in the steps. Ensure that steps are performed in sequence.

● Data flow: Controls the data flowing through the entire workflow. Generally,
the output of a previous step serves as the input of the next step. For

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

example, in the preceding image processing workflow, the image compression
result is the input of the watermarking step.

In common service orchestration, the execution sequence of each service needs to
be precisely controlled, so the control flow is the core of a workflow. However,
streaming processing scenarios such as file processing do not require more on the
control flow. For example, in the image processing scenario, large images can be
processed by block. Image compression and watermarking are not necessarily
completed in a specific sequence.

The following figure shows the architecture of Huawei Cloud FunctionGraph's
serverless streaming solution.

Serverless streaming allows steps to be executed in parallel rather than in a
specific sequence. Steps interact with each through data flows, which are
controlled by the Stream Bridge component. The function SDKs include a
streaming data API, which writes data into Stream Bridge in a gRPC stream.
Stream Bridge then distributes the data flow into the function pod in the next
step.

Procedure

Step 1 Create an image compression function, which uses ctx.Write() to return results as
streaming data.

NO TE

Currently, only Go functions are supported.

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

FunctionGraph supports streaming response with ctx.Write(). Instead of focusing
on network transmission, you only need to return the final results in a stream.

Step 2 Create a workflow on the FunctionGraph console.

Step 3 Invoke the synchronous flow execution API to obtain the file stream. The data is
returned to the client in chunked streaming mode.

----End

FunctionGraph
Best Practice 3 Data Processing Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

4 Functional Application Practices

4.1 Using FunctionGraph and CTS to Identify Login and
Logout Operations from Invalid IP Addresses

4.1.1 Introduction

Scenarios
Use Cloud Trace Service (CTS) to collect real-time records of cloud resource
operations.

Create a Cloud Trace Service (CTS) trigger to obtain records of subscribed cloud
resource operations; analyze and process the operation records, and report alarms.

Use SMN to push alarm messages to service personnel by SMS message or email.
The processing workflow is shown in Figure 4-1.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Figure 4-1 Processing workflow

Values
● Quickly analyzes operation records collected by CTS and filters out operations

from specified IP addresses.
● Processes and analyzes data in response to log events in a serverless

architecture, which features automatic scaling, no operation and
maintenance, and pay-per-use billing.

● Sends alarm notifications through SMN.

Notes and Constraints
This practice involves operations on CTS and SMN. For details about the
constraints, see the following sections:

● Data Trackers
● Creating a Key Event Notification

4.1.2 Preparation

Enabling CTS
Configure a tracker on CTS, as shown in Figure 4-2. For details, see Configuring a
Tracker.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_01_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0002.html

Figure 4-2 Configuring a tracker

Creating an Agency

Step 1 Log in to the IAM console, and choose Agencies in the navigation pane.

Step 2 On the Agencies page, click Create Agency.

Step 3 Set the agency information.
● For Agency Name: Enter an agency name, for example, serverless_trust.
● For Agency Type, select Cloud service.
● For Cloud Service, select FunctionGraph.
● For Validity Period, select Unlimited.
● For Description, enter a description.

Step 4 Click Next. On the Select Policy/Role page, select CTS Administrator and SMN
Administrator.

NO TE

● SMN Administrator: Users with this permission can perform any operation on SMN
resources.

● CTS Administrator depends on Tenant Guest. When you select the former, the latter
will also be selected.

Step 5 Click Next, select an authorization scope that meets your service requirements,
and click OK.

----End

Pushing Alarm Messages

For details about the configuration process and restrictions, see Creating a Key
Event Notification.

● Create a topic named cts_test on the SMN console. For details, see Creating
a Topic.

● Add subscriptions to the cts_test topic to push alarm messages. For details,
see Adding a Subscription.

NO TE

Alarm messages can be sent by emails, SMS messages, and HTTP/HTTPS.

In this example, when operation log events trigger the specified function, the function
filters operations that are performed by users not in the IP address whitelist, and
pushes alarm messages to the subscription endpoints.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

https://console-intl.huaweicloud.com/iam/?locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_01_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_01_0009.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/en-us_topic_0043961401.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/en-us_topic_0043961402.html

4.1.3 Building a Program
Download index.zip to create an alarm log analysis function from scratch.

Creating a Function
Create a function by uploading the sample code package to extract logs. Select
the Python 2.7 runtime and the agency serverless_trust created in Creating an
Agency. For details about how to create a function, see Creating an Event
Function.

This function analyzes received operation records, filters logins or logouts from
unauthorized IP addresses using a whitelist, and sends alarms under a specified
SMN topic. This function can be used to build an account security monitoring
service.

Setting Environment Variables
On the Configuration tab page of the function details page, set the environment
variables listed in Table 4-1.

Table 4-1 Environment variables

Environment Variable Description

SMN_Topic SMN topic.

RegionName Region name.

IP IP address whitelist.

Set the environment variables by following the procedure in Environment
Variables.

4.1.4 Adding an Event Source
Create a CTS trigger, as shown in Figure 4-3.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/index.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_logstore_warning.zip
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1441.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html

Figure 4-3 Creating a CTS trigger

CTS records the logins and logouts of users on IAM.

4.1.5 Processing Operation Records
The function runs in response to account logins and logouts to filter those not
from the IP address whitelist, and sends a message or email through SMN, as
shown in Figure 4-4.

Figure 4-4 Email notification

The email contains the unauthorized IP address and user operation (login or
logout).

On the Monitoring tab page of the function, check the number of invocations, as
shown in Figure 4-5.

Figure 4-5 Function metrics

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

4.2 Using FunctionGraph Functions As the Backend to
Implement APIG Custom Authorizers

4.2.1 Introduction
In addition to IAM and app authentication, APIG also supports custom
authentication with your own system, which can better adapt to your business
capabilities.

This chapter guides you through the process of creating a FunctionGraph API that
uses a custom authorizer.

Solution
● Log in to the FunctionGraph console, and create a function for custom

authentication.
● Create a service function.
● Create an API group on the APIG console.
● Create an API and configure a custom authorizer and a FunctionGraph

backend for it.
● Debug the API.

NO TE

After you complete the operations in this tutorial, your account will have the following
resources:

1. An API group storing APIs

2. A custom authentication function

3. A service function

4. An API with a custom authorizer and a FunctionGraph backend

4.2.2 Resource Planning
Ensure that the following resources are in the same region.

Table 4-2 Resource planning

Resource Quantity

API group 1

Custom
authentication
function

1

Service function 1

API 1

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

4.2.3 Building a Program

Creating an API group

Before creating a function and adding an event source, create an API group to
store and manage APIs.

NO TE

Before enabling APIG functions, buy a gateway by referring to Buying a Gateway.

Step 1 Log in to the APIG console, choose API Management > API Groups in the
navigation pane, and click Create API Group in the upper right.

Step 2 Select Create Directly, set the group information, and click OK.

● Name: Enter a group name, for example, APIGroup_test.

● Description: Enter a description about the group.

----End

Creating a Custom Authentication Function

Frontend custom authentication means APIG uses a function to authenticate
received API requests. To authenticate API requests by using your own system,
create a frontend custom authorizer in APIG. Create a FunctionGraph function
with the required authentication information. Then use it to authenticate APIs in
APIG.

This section uses the header parameter event["headers"] as an example. For the
description about request parameters, see Request Parameter Code Example.

Step 1 In the left navigation pane of the management console, choose Compute >
FunctionGraph to go to the FunctionGraph console. Then choose Functions >
Function List in the navigation pane.

Step 2 Click Create Function.

Step 3 Set the function information, and click Create Function.

● Template: Select Create from scratch.

● Function Type: Select Event Function.

● Function Name: Enter a function name, for example, apig-test.

● Agency: Select Use no agency.

● Runtime: Select Python 2.7.

Step 4 On the function details page that is displayed, click the Code tab and copy the
example request parameter code to the online editor, and click Deploy.

Step 5 Click Configure Test Event, and select an event template. Modify the template as
required, and click Create. In this example, add "auth":"abc" to "headers".

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

https://support.huaweicloud.com/intl/en-us/usermanual-apig/apig_03_0037.html

Figure 4-6 Configuring a test event

Step 6 Click Test. If the result is Execution successful, the function is successfully
created.

Figure 4-7 Viewing the execution result

----End

Creating a Custom Authorizer
Create a custom authorizer in APIG and connect it to the frontend custom
authentication function.

Step 1 In the left navigation pane of the management console, choose Middleware >
API Gateway to go to the APIG console. In the navigation pane, choose API
Management > API Policies. On the Custom Authorizers tab, click Create
Custom Authorizer.

Step 2 Configure basic information about the custom authorizer according to the
following figure.
● Name: Enter a name, for example, Authorizer_test.
● Type: Select Frontend.
● Function URN: Select apig-test.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Figure 4-8 Creating a custom authorizer

Step 3 Click OK.

----End

Creating a Backend Service Function

APIG supports FunctionGraph backends. After you create a FunctionGraph
backend API, APIG will trigger the relevant function, and the function execution
result will be returned to APIG.

Step 1 Create a service function by referring to Creating a Custom Authentication
Function. The function name must be unique.

Step 2 On the Code tab of the function details page, copy the following code to the
online editor, and click Deploy.
-*- coding:utf-8 -*-
import json
def handler (event, context):
 body = "<html><title>Functiongraph Demo</title><body><p>Hello, FunctionGraph!</p></body></html>"
 print(body)
 return {
 "statusCode":200,
 "body":body,
 "headers": {
 "Content-Type": "text/html",
 },

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

 "isBase64Encoded": False
 }

----End

Request Parameter Code Example

The following are the requirements you must meet when developing
FunctionGraph functions. Python 2.7 is used as an example.

The function must have a clear API definition. Example:

def handler (event, context)
● handler: name of the entry point function. The name must be consistent with

that you define when creating a function.
● event: event parameter defined in JSON format for the function.
● context: runtime information provided for executing the function. For details,

see SDK APIs.

event supports three types of request parameters in the following formats:
● Header parameter: event["headers"]["Parameter name"]
● Query string: event["queryStringParameters"]["Parameter name"]
● Custom user data: event["user_data"]

The three types of request parameters obtained by the function are mapped to the
custom authentication parameters defined in APIG.
● Header parameter: Corresponds to the identity source specified in Header for

custom authentication. The parameter value is transferred when the API that
uses custom authentication is called.

● Query string: Corresponds to the identity source specified in Query for custom
authentication. The parameter value is transferred when the API that uses
custom authentication is called.

● Custom user data: Corresponds to the user data for custom authentication.
The parameter value is specified when the custom authorizer is created.

● The function response cannot be greater than 1 MB and must be in the
following format:
{ "statusCode":200,
 "body": "{\"status\": \"allow\", \"context\": {\"user\": \"abc\"}}"
 }

The body field is a character string, which is JSON-decoded as follows:

{
 "status": "allow/deny",
 "context": {
 "user": "abc"
 }
}

The status field is mandatory and is used to identify the authentication result. The
authentication result can only be allow or deny. allow indicates that the
authentication is successful, and deny indicates that the authentication fails.

The context field is optional and can only be key-value pairs. The key value
cannot be a JSON object or an array.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0420.html#section2

The context field contains custom user data. After successful authentication, the
user data is mapped to the backend parameters. The parameter name in context
is case-sensitive and must be the same as the system parameter name. The
parameter name must start with a letter and can contain 1 to 32 characters,
including letters, digits, hyphens (-), and underscores (_).

Example Header Parameter

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event["headers"].get("auth")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"success"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

Example Query String

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event["queryStringParameters"].get("test")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"abcd"
 }
 })
 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

Example User Data

-*- coding:utf-8 -*-
import json
def handler(event, context):
 if event.get("user_data")=='abc':
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"allow",
 "context":{
 "user":"abcd"
 }
 })

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 }
 else:
 resp = {
 'statusCode': 200,
 'body': json.dumps({
 "status":"deny",
 })
 }
 return json.dumps(resp)

4.2.4 Adding an Event Source

Creating an API
After creating an API group, custom authentication function, and backend
function, create a FunctionGraph backend API that uses a custom authorizer by
performing the following steps:

Step 1 Log in to the APIG console, choose API Management > APIs in the navigation
pane, and click Create API in the upper right.

Step 2 Configure the basic information according to Figure 4-9 and Figure 4-10.
● API Name: Enter a name, for example, API_test.
● Group: Select API group APIGroup_test.
● URL: Set Method to ANY, Protocol to HTTPS, and Path to /testAPI.
● Gateway Response: Select default.
● Authentication Mode: Select Custom.
● Custom Authorizer: Select Authorizer_test.

Figure 4-9 Configuring frontend definition

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Figure 4-10 Configuring security settings

NO TE

For more parameters, see Creating an API.

Step 3 Click Next to configure the backend service according to Figure 4-11.
● Backend Type: Select FunctionGraph.
● Function URN: Select the created service function.
● Version/Alias: Select the latest version.
● Invocation Mode: Select Synchronous.

Figure 4-11 Configuring the backend service

Step 4 Click Finish.

Step 5 Click Publish to publish the API in the RELEASE environment.

Figure 4-12 Publishing an API

----End

4.2.5 Debugging and Calling the API
APIG provides online debugging, enabling you to check an API after configuring it.

Step 1 Log in to the APIG console. In the navigation pane, choose API Management >
APIs. Then click API_test, and click Debug.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

https://support.huaweicloud.com/intl/en-us/usermanual-apig/apig_03_0010.html

Step 2 Add a header parameter and click Debug.
● Parameter Name: Enter auth.
● Parameter Value: Enter abc.

Figure 4-13 Adding a header

Step 3 Check whether the API response contains the content you have defined in the
service function. See Figure 4-14.

Figure 4-14 API response

----End

4.3 Using FunctionGraph HTTP Functions to Process
gRPC Requests

Introduction
This section describes how to process gRPC requests in FunctionGraph.

This chapter uses example/helloworld in the gRPC example code project as an
example to describe how to process gRPC requests with HTTP functions in
FunctionGraph. Since HTTP functions do not directly support Go code deployment,
this chapter provides an example of using binary conversion to deploy a Go
program on FunctionGraph.

NO TE

● This feature is supported only in the LA-Santiago region.
● By default, you do not have gRPC permissions. To use gRPC, submit a service ticket to

add your account to the whitelist.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

https://grpc.io/docs/languages/go/quickstart/#get-the-example-code
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex

Procedure
1. Building a code package

Create the source file main.go. The code is as follows:
// Package main implements a grpc_server for Greeter service.
package main

import (
 "context"
 "flag"
 "fmt"
 "log"
 "net"

 pb "helloworld/helloworld"

 "google.golang.org/grpc"
)

var (
 port = flag.Int("port", 8000, "The grpc_server port")
)

// server is used to implement helloworld.GreeterServer.
type server struct {
 pb.UnimplementedGreeterServer
}

// SayHello implements helloworld.GreeterServer
func (s *server) SayHello(ctx context.Context, in *pb.HelloRequest) (*pb.HelloReply, error) {
 log.Printf("Received: %v", in.GetName())
 return &pb.HelloReply{Message: "Hello " + in.GetName()}, nil
}

func main() {
 flag.Parse()
 lis, err := net.Listen("tcp", fmt.Sprintf("127.0.0.1:%d", *port))
 if err != nil {
 log.Fatalf("failed to listen: %v", err)
 }
 s := grpc.NewServer()
 pb.RegisterGreeterServer(s, &server{})
 log.Printf("grpc_server listening at %v", lis.Addr())
 if err := s.Serve(lis); err != nil {
 log.Fatalf("failed to serve: %v", err)
 }
 }
bootstrap
$RUNTIME_CODE_ROOT/grpc-server

In main.go, a gRPC server is started using port 8000 and
helloworld.GreeterServer is registered. When the service is invoked, Hello
XXX will be returned.

2. Compiling and packaging

a. On the Linux server, compile the preceding code using the go build -o
grpc-server main.go command. Then, compress grpc-server and
bootstrap into a ZIP package named xxx.zip.

b. To use the Golang compiler to complete packaging on a Windows host,
perform the following steps:
Switch the compilation environment
Check the previous Golang compilation environment
go env
Set the following parameters to the corresponding value of Linux
set GOARCH=amd64
go env -w GOARCH=amd64

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

set GOOS=linux
go env -w GOOS=linux

go build -o [target executable program] [source program]
Example
go build -o grpc-server main.go

Restore the compilation environment
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=windows
go env -w GOOS=windows

3. Creating an HTTP function and uploading code
Create an HTTP function and upload the xxx.zip package. For details, see
Creating an HTTP Function.

4. Creating an APIG trigger
Create an APIG trigger. For details, see Using an APIG Trigger. You are
advised to set Request Protocol to gRPC and Security Authentication to
None to simplify the debugging process.

Figure 4-15 APIG trigger

5. Invocation test
Use Postman to debug gRPC requests.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0204.html

Figure 4-16 gRPC request result

4.4 Using a Java Function and Log4j2 to Print Logs

Introduction
FunctionGraph supports Log4j2 for Java functions. This section describes how to
use functions and Log4j2 to print logs.

Step 1: Download a Package
In this example, Java is used to implement log printing. You can directly download
the sample code Log_demo.jar without any modification.

The key sample code is as follows.

package org.example;

import com.huawei.services.runtime.Context;
import lombok.extern.slf4j.Slf4j;
import org.apache.logging.log4j.core.config.Configurator;
import org.apache.logging.log4j.util.LoaderUtil;

import java.net.URISyntaxException;
import java.util.Objects;

@Slf4j

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/log4j2_example_java.zip

public class LogTest {

 public void init(Context context) {
 try {

Configurator.reconfigure(Objects.requireNonNull(LoaderUtil.getThreadContextClassLoader().getResource("lo
g4j2-custom.xml")).toURI());
 } catch (URISyntaxException e) {
 throw new RuntimeException(e);
 }
 }

 public void handler(String event, Context context) {
 log.debug("debug log");
 log.info("info log");
 log.warn("warn log");
 log.error("info log");
 }
}

The following code is added to the initializer:
Configurator.reconfigure(Objects.requireNonNull(LoaderUtil.getThreadContextClassLoader().getResource("lo
g4j2-custom.xml")).toURI());

Step 2: Creating a Function

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane. In the upper right corner, click Create Function.

Step 2 Click Create from scratch and configure the function information.
● Function Type: Select Event Function.
● Region: Select a region based on site requirements.
● Function Name: Enter a custom name.
● Runtime: Select Java 8.

Retain the default values for other parameters and click Create Function.

Step 3 Upload the function code.

After the function is created, go to the function details page, click the Code tab,
choose Upload > Local ZIP, and add the ZIP file downloaded in Step 1:
Download a Package.

Step 4 Enable class isolation.

After the code package is successfully deployed, choose Configuration >
Advanced Settings, enable Class Isolation, and click Save as shown in Figure
4-17.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 4-17 Enabling class isolation

Step 5 Set the function handler.

As shown in Figure 4-18, choose Configuration > Basic Settings, set Handler to
org.example.LogTest.handler, and click Save.

Figure 4-18 Setting the handler

Step 6 Set the function initializer.

As shown in Figure 4-19, choose Configuration > Lifecycle, enable Initialization.
On the displayed page, set Function Initializer to org.example.LogTest.init, and
click Save.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Figure 4-19 Setting the function initializer

----End

Step 3: Testing the Function

Step 1 After all parameters are configured, as shown in Figure 4-20, click the Code tab
and click Configure Test Event, select Blank Template, and click Create.

Figure 4-20 Configuring a test event

Step 2 Select the created test event and click Test. The test result is displayed in
Execution Result tab on the right.

----End

4.5 Using FunctionGraph to Deploy Stable Diffusion for
AI Drawing

4.5.1 Introduction

Stable Diffusion Scenarios

Stable Diffusion is an open-source text-to-image generation model. It can
generate high-quality and unique images based on user prompts, providing a wide
range of creative possibilities. With Stable Diffusion WebUI, you can see the image
generation process.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

You can deploy Stable Diffusion applications in FunctionGraph Applications page
as required.

● Quick deployment: You can use the default model and temporary domain
name to quickly deploy the Stable Diffusion model without having a deep
technical background.

● Custom domain name: You can bind a custom domain name for your Stable
Diffusion application to enable private and public access.

● Custom model: You can mount a file system to an application and upload a
custom model. Different model capabilities can be used to generate more
personalized images.

● Advanced usage: For more scenarios, see (Advanced) Mounting an SFS File
System to Multiple Users, (Advanced) Using ECS as an NFS Server to
Isolate Resources of Multiple Users, (Advanced) Accessing Applications
Using APIs, and (Advanced) Enabling WebUI Authentication.

Advantages
● Easy to deploy

The deployment process is simple. With the serverless solution, you can
experience Stable Diffusion without server management and O&M.

● Open-source and customizable
You can easily implement personalized AI painting based on multiple
customized and advanced application scenarios.

Constraints
Currently, Stable Diffusion application is only available in the CN East-Shanghai1
region. Ensure that all related resources are deployed in this region.

Using Moderation to Review the Generation Result
Stable-Diffusion is an AIGC inference model. The final result of image generation
may be uncertain due to different prompts and models, which may cause
potential violations. You are advised to use Stable-Diffusion with Huawei Cloud
Moderation to review the generated result. For details, see Image Moderation
(V3).

4.5.2 Resource and Cost Planning
Plan resources and costs based on your requirements. For details, see Table 4-3.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

https://support.huaweicloud.com/intl/en-us/api-moderation/moderation_03_0086.html
https://support.huaweicloud.com/intl/en-us/api-moderation/moderation_03_0086.html

Table 4-3 Resource and cost planning

Resourc
e

Description Billing Mandatory

Function
Graph

● Function
type:
container
image-based
HTTP
function

● Region: CN
East-
Shanghai1

● Quantity: 2
(functions
are
automaticall
y generated
after the
application
is created)

● Billing mode: Pay-per-use
● The first 1 million invocations

are free of charge in a month.
For details about the billing
items, see Pay-per-Use
Billing.

Yes

API
Gateway
(APIG)

● Version:
dedicated
gateway

● Region: CN
East-
Shanghai1

● Quantity: 1

● Billing mode: Select yearly/
monthly or pay-per-use based
on service requirements.

● For details about the billing
modes and standards, see
APIG Billing Modes.

Yes

Domain
Name
Service
(DNS)

Public domain
name
resolution

Free Mandatory for
public domain
name
resolution with
DNS

Virtual
Private
Cloud
(VPC)

● Region: CN
East-
Shanghai1

● Number of
subnets: 1

● Quantity: 1

● VPC: free
● Subnet: free

Mandatory
when a custom
model is used
or there are
multiple users.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html
https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html
https://support.huaweicloud.com/intl/en-us/price-apig/apig_08_0003.html

Resourc
e

Description Billing Mandatory

Scalable
File
Service
(SFS)

● Region: CN
East-
Shanghai1

● File system
type:
Available
SFS Turbo
file system

● Type: 250
MB/s/TiB

● Capacity: 1.2
TB

● Quantity: 1

● Billing mode: Pay-per-use
● For details about the billing

items, see SFS Pay-per-Use
Billing.

Mandatory for
uploading and
using a custom
model

Elastic
Cloud
Server
(ECS)

● Region: CN
East-
Shanghai1

● OS: Public
image
EulerOS 2.5
64bit (40
GiB)

● Number of
security
groups: 1

● Quantity: 1

● Billing mode: Pay-per-use
● Creating a security group:

Free
● The instance type, storage

specifications, and whether to
enable public access are
selected based on service
requirements. For details
about the billing items and
standards, see the ECS Pay-
per-Use Billing.

Mandatory
when an ECS is
used as the
NFS server

4.5.3 Procedure
Table 4-4 describes the procedure for deploying the Stable Diffusion application
using FunctionGraph. The advanced process is oriented to specific service
scenarios.

Table 4-4 Procedure for deploying the Stable Diffusion application

Step Description

Deploying and Using
the Stable Diffusion
Application

You can create an application using the Stable
Diffusion template in FunctionGraph Applications
page to use the default model and temporary
domain names.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://support.huaweicloud.com/intl/en-us/price-sfs/sfs_billing_0004.html
https://support.huaweicloud.com/intl/en-us/price-sfs/sfs_billing_0004.html
https://support.huaweicloud.com/intl/en-us/price-ecs/ecs_billing_2003.html
https://support.huaweicloud.com/intl/en-us/price-ecs/ecs_billing_2003.html

Step Description

(Optional) Binding a
Custom Domain Name

To bind a custom domain name to access the
application, perform the following operations:
1. Prepare a custom domain name.
2. Configure domain name resolution.
3. Bind the custom domain name.

(Optional) Uploading
a Custom Model

To use a custom model, perform the following
operations:
1. Create a VPC and subnet.
2. Create an SFS Turbo file system.
3. Initialize the file system mounted to the custom

model.
4. Upload and load a custom model.

(Advanced) Using ECS
as an NFS Server to
Isolate Resources of
Multiple Users

To isolate resources among multiple users, you can
mount an ECS as the source of a file system. You can
set a shared NFS path to manage resources of
multiple users. The operations are as follows:
1. Buy an ECS.
2. Configure NFS sharing for an ECS.
3. Mount an ECS to the Stable Diffusion application

function.
4. Upload and load a model.

(Advanced) Mounting
an SFS File System to
Multiple Users

To share model resources among multiple users, you
can mount the same SFS Turbo file system to each
user. In addition, you can set the path for saving the
results of individual applications to isolate the
inference results. To do so, perform the following
operations:
1. Create a multi-user configuration file.
2. Modify environment variables and use the new

configuration file.
3. Change the path for saving the result.

(Advanced) Enabling
WebUI Authentication

To enhance application security, you can configure
function environment variables to enable WebUI
authentication. When accessing the WebUI, you need
to enter the username and password to perform
drawing operations.

(Advanced) Accessing
Applications Using
APIs

To access applications using APIs, you can enable and
configure concurrency parameters by configuring
function environment variables.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

4.5.4 Deploying and Using the Stable Diffusion Application
Use the Stable-Diffusion template to create an application and configure the
required agency. After the application is created, you can use the built-in default
models and temporary domain names.

Step 1: Creating a Cloud Service Agency for FunctionGraph

To deploy a Stable Diffusion application, you need to configure an agency for
FunctionGraph to allow it to use other cloud services.

Step 1 Log in to the IAM console. In the navigation pane, choose Agencies. On the
Agencies page that is displayed, click Create Agency in the upper right corner.

Step 2 Set the following parameters:
● Agency Name: Enter serverless_trust.
● Agency Type: Select Cloud service.
● Cloud Service: Select FunctionGraph.
● Validity Period: Select Unlimited.
● (Optional) Description: Enter Stable Diffusion.

Step 3 Click OK. The system displays a message indicating that the creation is successful.
Click Authorize.

Step 4 On the Select Policy/Role page, search for the policies listed in Table 4-5 as
required, select them, and click Next.

Table 4-5 Policies and related description

Policy Description Mandatory

SWR Admin SoftWare Repository
for Container (SWR)
administrator with full
permissions.

Yes

VPC Administrator
(The system will select the
Server Administrator system
role that the system role
depends on. You do not need
to manually cancel the
selection.)

VPC Administrator:
administrator of the
VPC service.
Server Administrator:
server administrator.

Mandatory for
uploading and using a
custom model.

SFS FullAccess Full permissions for SFS Mandatory for
mounting an SFS file
system.

SFS Turbo FullAccess Full permissions for SFS
Turbo.

Mandatory for
mounting an SFS file
system.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://console-intl.huaweicloud.com/iam/?locale=en-us

Step 5 On the Select Scope page shown in Figure 4-21, select Region-specific projects,
select cn-east-3 [CN East-Shanghai1], and click OK.

Figure 4-21 Region-specific projects

Step 6 After the authorization is successful, click Finish to view the authorization record.

----End

Step 2: Buying a Dedicated Gateway
Buy a dedicated gateway based on your service requirements. For details, see
Creating a Gateway. Pay attention to the following configuration during the
purchase:
● Region: CN East-Shanghai1
● AZ: The AZ must be the same as that of the created subnet. In this example,

AZ 1 is used.
● Public Inbound Access: In this example, enable the public inbound access.

Select the bandwidth as required.

Step 3: Creating an Application Using the Stable Diffusion Template
Step 1 Log in to the FunctionGraph console and select CN East-Shanghai1 region. In

the navigation pane on the left, choose Applications. In the upper right corner,
click Create. The page for selecting a template is displayed.

Step 2 As shown in Figure 4-22, find the AI Drawing Stable-Diffusion template and
click Create Application. Read the displayed description carefully, select the check
box, and click Agree and Continue.

Figure 4-22 Selecting the AI Drawing Stable-Diffusion template

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://support.huaweicloud.com/intl/en-us/usermanual-apig/apig_03_0037.html
https://console-intl.huaweicloud.com/functiongraph/?locale=en-us#

NO TE

If the Service Subscription dialog box is displayed, read the description and click Enable
Now.

Step 3 On the Configure Application page, set application parameters as shown in
Figure 4-23. After setting the parameters, click Create Now in the lower right
corner of the page.
● Application Name: Enter a custom name or use the default name.
● Agency: Select the serverless_trust agency created in Step 1: Creating a

Cloud Service Agency for FunctionGraph.
● APIG Instance: Select the gateway created in Step 2: Buying a Dedicated

Gateway.

Figure 4-23 Application configuration

Step 4 Wait until the application is created. The application contains resources such as
functions, API gateways, and triggers, as shown in Figure 4-24. For details about
the key resources of FunctionGraph, see Table 4-6.

To make it easier for you to experience the feature, a temporary domain
name is allocated to you. The temporary domain name can be used only for
testing and is valid for 30 days. To allow long-term access to applications, bind a
custom domain name. For details, see (Optional) Binding a Custom Domain
Name.

Figure 4-24 Application created

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Table 4-6 Key function services

Resource Logical
Name

Description

stable_diffusion Accesses the Stable Diffusion WebUI through the
APIG trigger.

custom_models_tool Manages Stable Diffusion resources (uploading
models and plug-ins and downloading images) via
the APIG trigger.

----End

Step 3: Using the Default Model and Temporary Domain Name for AI
Drawing

Step 1 On the application details page shown in Figure 4-25, click Access Application.
The Stable Diffusion WebUI page is displayed. The first cold start takes about 30
seconds. If the loading times out, refresh the page.

Figure 4-25 Accessing the application

Step 2 On the txt2img tab page, enter the corresponding prompt word and reverse
prompt (in both Chinese and English), and click Generate on the right. An image
that matches the prompt word description is generated.

Figure 4-26 Stable Diffusion WebUI

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

NO TICE

The application created in the preceding steps can only use the default model
built in the application for AI drawing. If you want to use more custom models,
you need to mount an external file system to the application. For details, see
(Optional) Uploading a Custom Model.

----End

4.5.5 (Optional) Binding a Custom Domain Name
To enable private and public access to the Stable Diffusion application, bind a
custom domain name to the application.

Prerequisites
The Stable Diffusion application has been deployed. For details, see Deploying
and Using the Stable Diffusion Application.

Step 1: Preparing a Custom Domain Name
Apply for a public network domain name through the domain name registrar.
Ensure that the domain name is available.

Step 2: Configuring Domain Name Resolution

Step 1 After an application is created, click Bind now in the prompt, as shown in Figure
4-27. The APIG console is displayed.

Figure 4-27 Clicking the Bind now button

Step 2 On the displayed APIG console, click the Summary tab and copy the subdomain
name as shown in Figure 4-28.

Figure 4-28 Copying the subdomain name

Step 3 Log in to the DNS console, choose Public Zones, and click Manage Record Set on
the right of the purchased domain name as shown in Figure 4-29.

NO TE

If you use a domain name not registered with Huawei Cloud, see Creating a Public
Domain Name.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://support.huaweicloud.com/intl/en-us/usermanual-dns/en-us_topic_0035467702.html
https://support.huaweicloud.com/intl/en-us/usermanual-dns/en-us_topic_0035467702.html

Figure 4-29 Clicking Manage Record Sets

Step 4 On the Record Sets tab, click Add Record Set, as shown in Figure 4-30.

Figure 4-30 Adding a record set

Step 5 In the displayed Add Record Set dialog box, configure the information.
● Type: Select CNAME – Map one domain to another.
● Name: Set it according to Adding a CNAME Record Set.
● Value: Enter the subdomain name copied in Step 2.

Retain the default values for other parameters and click OK to complete domain
name resolution as shown in Figure 4-31.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/usermanual-dns/dns_usermanual_0006.html

Figure 4-31 Configuring the record set

----End

Step 3: Bind a Custom Domain Name

Step 1 Return to the APIG console, as shown in Figure 4-32. On the Domain Names tab
page, click Bind Independent Domain Name, enter a custom domain name, and

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

click OK. After the binding is successful, you can unbind the temporary domain
name.

Figure 4-32 Binding an independent domain name

Step 2 Return to the application details page on the FunctionGraph console, as shown in
Figure 4-33. Click then refresh to access the application using the custom domain
name.

Figure 4-33 Refreshing the bound domain name

----End

4.5.6 (Optional) Uploading a Custom Model
The Stable Diffusion application has default models. To use more custom models,
initialize the file system mounted to the custom model in the created application
and upload the custom models.

Prerequisites
1. FunctionGraph cloud service agencies contain the SWR Admin, VPC

Administrator, Server Administrator, SFS FullAccess, and SFS Turbo
FullAccess permissions.

2. The Stable Diffusion application has been deployed. For details, see
Deploying and Using the Stable Diffusion Application.

Step 1: Creating a VPC and Subnet

Step 1 Log in to the VPC console and click Create VPC.

Step 2 On the Create VPC page, set parameters by referring to Table 4-7 and retain the
default values for other parameters.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://console-intl.huaweicloud.com/vpc/?locale=en-us#

Table 4-7 Configuring the VPC and subnet

Cat
ego
ry

Paramet
er

Description Example Value

Bas
ic
Info
rm
atio
n

Region Mandatory
Region where the VPC and its
subnets are deployed. Currently,
the Stable Diffusion application
can be deployed only in CN East-
Shanghai1.

CN East-Shanghai1

Name Mandatory.
VPC name. The following
requirements must be met:
● Must contain 1 to 64 characters.
● Can contain letters, numbers,

underscores (_), hyphens (-),
and periods (.).

vpc-fg

IPv4
CIDR
Block

Mandatory.
Set the IPv4 CIDR block of the VPC
based on the suggestions on the
page. When selecting the VPC CIDR
block, consider the following two
points:
● Number of IP addresses: Reserve

sufficient IP addresses for
subsequent business growth.

● IP address ranges: Avoid IP
address conflicts if you need to
connect a VPC to an on-
premises data center or connect
two VPCs.

192.168.x.x/16

Enterpris
e Project

Mandatory.
An enterprise project facilitates
project-level management and
grouping of cloud resources and
users. The default project is
default.

default

Sub
net
Sett
ing
1

Subnet
Name

Mandatory.
The subnet name. The following
requirements must be met:
● Must contain 1 to 64 characters.
● Can contain letters, numbers,

underscores (_), hyphens (-),
and periods (.).

subnet-fg

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Cat
ego
ry

Paramet
er

Description Example Value

AZ Mandatory.
AZs in the same VPC can
communicate with each other over
the intranet. AZs are physically
isolated from each other. If the
service requirements are high, you
are advised to select multiple AZs.
In this example, one AZ is selected.

AZ1 (center)

IPv4
CIDR
Block

Mandatory.
The IPv4 CIDR block of the subnet,
which must be within the VPC
CIDR block. The mask length of the
subnet CIDR block ranges from the
mask length of the VPC CIDR block
to 29. You can select a value as
required.

192.168.x.x/24

Step 3 Click Create Now.

----End

Step 2: Creating an SFS Turbo File System

Step 1 Log in to Huawei Cloud SFS Console, select SFS Turbo, and click Create File
System. The Create File System page is displayed.

Step 2 On the Create File System page, set parameters by referring to Table 4-8. Retain
the default values for other parameters. For details about other parameters, see
Creating an SFS Turbo File System.

Table 4-8 File system parameters

Parameter Description Example Value

Billing Mode Mandatory.
● Pay-per-use is suitable for

flexible usage.
● Yearly/Monthly is ideal when

your resource usage duration is
predictable.

Select Pay-per-use.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://console-intl.huaweicloud.com/sfs/v2?locale=en-us#/
https://support.huaweicloud.com/intl/en-us/usermanual-sfsturbo/sfsturbo_01_0359.html

Parameter Description Example Value

Region Mandatory.
Region where the file system is
deployed. Currently, the AI drawing
application can be deployed only
in CN East-Shanghai1 and must
be in the same VPC as the created
VPC.

CN East-Shanghai1

Project Mandatory.
Region where the project is
deployed. Select the default
synchronization settings based on
the region.

CN East-Shanghai1
(default)

AZ Mandatory.
The value must be the same as the
AZ of the created subnet.

Select AZ1.

Type Mandatory.
Select the file system type and
performance based on the
recommended scenario and actual
situation. In this example, all file
system types are supported. You
are advised to select the 250
MB/s/TiB type that is suitable for
most application scenarios.

250 MB/s/TiB

Capacity Mandatory.
Maximum capacity of a single file
system. Select a value based on
the site requirements. The value
must be an integer multiple of 1.2
and in the range from 1.2 to
1023.6.

1.2

Enterprise
Project

Mandatory.
The value must be the same as
that selected when the VPC is
created.

default

VPC Mandatory.
VPC and subnet to which the file
system belongs. Select the VPC and
subnet created in Step 1: Creating
a VPC and Subnet.

vpc-fg;
subnet-fg(192.168.x.x/24)

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

Parameter Description Example Value

Name Mandatory.
Name of the file system. The
following requirements must be
met:
● Must start with a letter and

contain 4 to 64 characters.
● Only letters, digits, underscores

(_), and hyphens (-) are
allowed.

sfs-turbo-fg

Step 3 After the parameters are configured, click Create Now. Confirm the information
and click Submit. Wait until the file system creation task is submitted successfully.

----End

Step 3: Initializing a Custom Model

Step 1 Log in to the FunctionGraph console and select CN East-Shanghai1 region. In
the navigation pane on the left, choose Applications. Click the name of the
application that is successfully created and needs to be initialized.

Step 2 On the application details page, click Initialize Custom Model as shown in Figure
4-34, read the description in the displayed dialog box, select the check box, and
click OK.

Figure 4-34 Initializing a custom model

Step 3 In the Initialize Custom Model dialog box, set the following parameters:
● VPC: Select vpc-fg (192.168.x.x/16).
● Subnet: Select subnet-fg (192.168.x.x/24).
● File System Type: Select SFS Turbo.
● File System: Select sfs-turbo-fg.

Retain the default values for other parameters, as shown in Figure 4-35. After the
configuration is complete, click OK.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us#

Figure 4-35 Initializing a custom model

Step 4 Return to the application details page. If the Initialize Custom Model button
changes to Upload Model, the initialization is successful. Click Access Application
to go to the WebUI. The system automatically creates the directories and files
required for application deployment in the file system.

NO TE

You do not need to perform any operation after logging in to the Stable Diffusion WebUI.
This operation is used to load directories and files in the file system for uploading custom
models.

----End

Step 4: Uploading and Loading a Custom Model

Step 1 Return to the application details page and click Upload Model. The file
management page is displayed. The default username and password are admin.
Change the password on the setting page after login to ensure data security.

Step 2 Table 4-9 lists some key directories related to the upload of custom models. You
can upload model files to the corresponding directories.

Table 4-9 Key directory path

Path Description

sd/models/Stable-diffusion Stores Checkpoint model files.

sd/models/VAE Stores VAE files.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Path Description

sd/models/Lora Stores Lora files.

sd/extensions Stores plug-ins.

sd/outputs Stores outputs.

Step 3 After the upload is complete, return to the Stable Diffusion WebUI. Click the
refresh button to load the model or open the WebUI again. After the loading is
successful, you can view and select the new model for AI drawing. The loading
may take a long time.

----End

4.5.7 (Advanced) Using ECS as an NFS Server to Isolate
Resources of Multiple Users

Application Scenario
FunctionGraph functions can be mounted to SFS file systems or NFS shared paths
shared by ECSs. In multi-user scenarios, ECSs can be used to effectively manage
resources of multiple users. You can configure specific permissions to meet the
requirements of strong isolation between users.

Prerequisites
1. Each user must have the SWR Admin, VPC Administrator, Server

Administrator, SFS FullAccess, and SFS Turbo FullAccess permissions in
their agencies.

2. Each user must complete the steps in Deploying and Using the Stable
Diffusion Application to create an application.

3. You have completed steps in Step 1: Creating a VPC and Subnet.

Step 1: Buying an ECS
Go to the Buy ECS page. The instance type and whether to enable public access
can be selected based on service requirements. Follow the instructions below. For
details about other parameters, see Setting ECS Purchase Parameters.
● Basic Configuration: See Figure 4-36. In this example, the Pay-per-use

billing mode is used, and the region is CN East-Shanghai1.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

https://console-intl.huaweicloud.com/ecm/?locale=en-us#/ecs/createVm
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html

Figure 4-36 Basic configuration

● OS: EulerOS 2.5 64bit(40 GiB) is used in this example.

NO TE

Some Linux commands may vary with the image version.

● Storage & Backup: The size of most model files ranges from 1 GB to 10 GB.
You are advised to select the system disk capacity based on the actual
requirements and add data disks by referring to Figure 4-37.

Figure 4-37 Configuring a system disk

● Network: Select the VPC and subnet created in Step 1: Creating a VPC and
Subnet, as shown in Figure 4-38.

Figure 4-38 Configuring network

● Security Group: Create a security group by referring to Figure 4-39. The
inbound rule allows IP addresses in the subnet to access ports 111, 2049,
2051, 2052, and 20048 to support the NFS service. Other ports, such as port
22 for SSH and SFTP and port 21 for FTP, can be configured based on the
actual protocol, port, and source address.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Figure 4-39 Configuring a security group

Step 2: Configuring NFS Sharing for the ECS
After the ECS is purchased, you can configure NFS sharing. The following uses
user1 and user2 as an example. You can add or delete users as required.

1. Add user1 and user2 and create the home directory.
useradd -m user1 && useradd -m user2

2. Change the passwords of user1 and user2.
passwd user1
passwd user2

3. Create a shared directory for users and change the operation permission on
the shared directory to 777.
mkdir /home/user1/share && chmod 777 /home/user1/share
mkdir /home/user2/share && chmod 777 /home/user2/share

NO TE

The shared directory is used as a subdirectory of the home directory to restrict other
users' operations and ensure that the function has the operation permission after
being mounted to the directory. Therefore, setting the permission to 777 does not
cause excessive permissions.

4. Install the NFS service.
yum install rpcbind nfs-utils // Run the corresponding command for images that use apt or other
package management tools.

5. Add the following content to the /etc/exports file:
/home/user1/share xx.xx.xx.xx/xx (rw) // Enter the created subnet CIDR block.
/home/user2/share xx.xx.xx.xx/xx (rw) // Enter the created subnet CIDR block.

6. Start the NFS service.
systemctl start rpcbind nfs

7. Enable the NFS service to automatically start upon system startup.
echo "xx.xx.xx.xx:/home/user1/share /nfs nfs4 defaults 0 0" >> /etc/fstab // Enter the IP address of the
ECS in the subnet.
echo "xx.xx.xx.xx:/home/user2/share /nfs nfs4 defaults 0 0" >> /etc/fstab // Enter the IP address of the
ECS in the subnet.
mount -av

8. Check the sharing information. If the information shown in Figure 4-40 is
displayed, the NFS sharing is successfully configured.
showmount -e xx.xx.xx.xx //Replace IP address with the private IP address of the server host.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Figure 4-40 Checking sharing information

Step 3: Mounting an ECS to the Stable Diffusion Application
Log in to the FunctionGraph console and go to the application center. user1 and
user2 have created a Stable Diffusion application under their respective accounts.
The following uses user1 as an example. The operations for user2 are the same.

Step 1 Go to the application details page, find the function resources whose Logic Name
are stable_diffusion and custom_models_tool in the Resources tab. Click the
links to go to the function details page, as shown in Figure 4-41.

The operations of the two functions are the same. The stable_diffusion function
is used as an example.

Figure 4-41 Functions of user1

Step 2 On the function details page shown in Figure 4-42, choose Configuration >
Network, enable VPC Access, select the VPC and subnet used in Step 1: Buying
an ECS, and click Save.

Figure 4-42 Configuring network

Step 3 In the navigation tree on the left of the Configuration page, choose File Systems
> Mount File System. After the configuration is complete, click OK.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us#

● File System Type: Select ECS.

● ECS: Select the ECS created in Step 1: Buying an ECS.

● Shared Directory: Enter /home/user1/share (e/home/user2/share for
user2).

● Access Path: Enter /mnt/auto.

NO TE

If an SFS Turbo file system has been mounted, unmount the SFS Turbo file system after the
ECS is successfully mounted and release the SFS Turbo file system resources in a timely
manner to avoid continuous charging.

Step 4 Set the custom_models_tool function by referring to Step 1 to Step 3.

----End

Step 4: Uploading and Loading a Model

Step 1 Return to the application details page and click Access Application to go to the
WebUI. The function automatically creates the directories and files required by the
application in the mounting directory.

Step 2 After the page is successfully loaded, return to the application details page and
click Upload Model to open the file management tool. The default username and
password are both admin. After login, change the password on the setting page
to ensure data security. Figure 4-43 shows the sd directory related to the
application.

Figure 4-43 File management tool

Step 3 Upload the model and plugin files to the corresponding directories. For details
about some key directories, see Table 4-9.

Step 4 Reload the WebUI. The newly imported models are displayed.

Step 5 Click Generate in the upper right corner to start AI drawing. The result image is
automatically saved to the /home/user1/share/sd/outputs/txt2img/202x-xx-xx
directory, as shown in Figure 4-44.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Figure 4-44 Directory for saving images

----End

4.5.8 (Advanced) Mounting an SFS File System to Multiple
Users

Application Scenario

Storing model files for each user uses too much space. Mount the same SFS file
system to users' applications so that they can share model file resources. To avoid
inference results of different users from affecting each other, you can change the
result save path on the Stable Diffusion WebUI.

Prerequisites
1. Each user must have the SWR Admin, VPC Administrator, Server

Administrator, SFS FullAccess, and SFS Turbo FullAccess permissions in
their agencies.

2. Each user must complete the steps in Deploying and Using the Stable
Diffusion Application to create an application.

3. Each user must use the same SFS file system to initialize the mounted file
system of the custom model. For details, see Step 3: Initializing a Custom
Model. The sd directory already exists in the mounted SFS file system.

Step 1: Creating a Multi-user Configuration File

This example uses two users user1 and user2. You can add or delete users as
required.

Step 1 Select a user, go to the details page of the Stable Diffusion application whose
custom model has been initialized, click Upload Model, and log in to the file
system.

Step 2 Go to the sd directory, as shown in Figure 4-45.

Figure 4-45 Entering the sd directory

Step 3 As shown in Figure 4-46, find the config.json file, select it, and copy it to any
directory. In this case, the file is still stored in the sd directory and renamed
config_user1.json. As shown in Figure 4-47, copy the file for user2 and rename it
config_user2.json.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

Figure 4-46 Copying the config.json File

Figure 4-47 Creating the config_user1.json and config_user2.json files

----End

Step 2: Modifying Environment Variables and Using the New Configuration
File

Step 1 Go to the Stable Diffusion application details page, find the function resource
whose logic name is stable_diffusion in the Resource tab, and click the link to go
to the function details page.

Step 2 On the Configuration > Environment Variables tab page, click Edit Environment
Variable. In the dialog box that is displayed, click Add. Set the environment
variable for user1 based on Table 4-10 and user2 based on Table 4-11 and click
OK.

Table 4-10 Environment variables of the new configuration file used by user1

Key Value

EXTRA_ARGS --ui-settings-file=/mnt/auto/sd/
config_user1.json

Table 4-11 Environment variables of the new configuration file used by user2

Key Value

EXTRA_ARGS --ui-settings-file=/mnt/auto/sd/
config_user2.json

----End

NO TE

To enable (Advanced) Enabling WebUI Authentication and (Advanced) Accessing
Applications Using APIs at the same time, you can set environment variables at the same
time. For details, see Table 4-14.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

Step 3: Changing the Result Save Path

After the preceding configurations are complete, the two users can share the
model files in the same SFS file system. To further isolate the inference results of
different users, you can change the result save path in the settings.

4.5.9 (Advanced) Enabling WebUI Authentication
WebUI authentication is disabled by default for Stable Diffusion applications
deployed in the application center. To prevent functions from being abused due to
domain name leakage, configure function environment variables to enable WebUI
authentication. For details, see Configuring Environment Variables.

Enabling WebUI Authentication

Step 1 Go to the Stable Diffusion application details page, find the function resource
whose logic name is stable_diffusion in the Resource tab, and click the link to go
to the function details page.

Step 2 Choose Configuration > Environment Variables, click Edit Environment
Variable. In the dialog box that is displayed, click Add, add the information in the
following table, and click OK.

Table 4-12 Environment variables for enabling WebUI authentication

Key Value Description

EXTRA_ARGS --gradio-auth
user1:password1

Enter the username in user1
and the password in
password1.

Step 3 After the setting is complete, you need to enter the username and password to
access the WebUI.

----End

4.5.10 (Advanced) Accessing Applications Using APIs
API access is disabled by default for the Stable Diffusion application deployed in
the application center. You can enable API access by Configuring Function
Environment Variables.

Accessing the Application Using an API

Step 1 Go to the Stable Diffusion application details page, find the function resource
whose logic name is stable_diffusion in the Resource tab, and click the link to go
to the function details page.

Step 2 Choose Configuration > Environment Variables, click Edit Environment
Variable. In the dialog box that is displayed, click Add, add the information in the
following table, and click OK.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html

Table 4-13 Environment variables for accessing applications using APIs

Key Value Description

EXTRA_A
RGS

--api --api-auth
username1:password1,username
2:password2 --nowebui

Enter the usernames in
username1 and username2,
and enter the passwords in
password1 and password2. Use
commas (,) to separate the
usernames and passwords of
multiple users.

Step 3 After the configuration is complete, you need to enter the username and password
when accessing the application using APIs.

----End

Configuring Concurrency Parameters
Configure concurrency parameters by referring to Configuring Concurrency
Parameters. The recommended parameters in WebUI and API modes are as
follows:
● WebUI mode

– Set the value of Max. Requests per Instance to 100 or higher. According
to testing results, in single-user scenarios, you are advised to set the Max.
Requests per Instance to around 15. For multi-user scenarios, the value
should be configured to 100 or higher.

– Set the value of Max. Instances per Function to 1. In WebUI mode, the
task progress is continuously monitored during image generation. If there
are multiple instances, requests may be disordered, which may cause
obstacles in progress display and final result display.

● API mode
– Set the value of Max. Requests per Instance between 1 and 5 to ensure

that a single instance does not process too many requests. When the
concurrent requests reach the upper limit, new instances are triggered to
ensure image generation efficiency.

– Set the value of Max. Instances per Function to 400 (default). The value
can be changed as needed.

Accessing an Application Using APIs and Enabling WebUI Authentication
To access an application using APIs and enable WebUI authentication, you can set
environment variables by referring to Table 4-14.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0303.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0303.html

Table 4-14 Accessing an application using APIs and enabling WebUI
authentication

Key Value Description

EXTRA_ARGS --api --api-auth
user1:password1 --gradio-
auth user1:password1

Enter the usernames in
username1 and
username2, and enter the
passwords in password1
and password2. Use
commas (,) to separate
the usernames and
passwords of multiple
users.

4.5.11 Disclaimer
1. The Stable-Diffusion, Stable-Diffusion-WebUI, and image build project used

by this application are open-source projects in the community. Huawei Cloud
only provides computing power support. For any question, seek help from the
open-source community or solve the problems by yourself.

2. This practice is only an example for your reference and learning. If you want
to use it in the production environment, optimize it according to the image
build project. If you have any questions, submit a service ticket.

3. A gateway will be created on APIG upon application deployment. Bind a
custom domain name as prompted and use it to access the WebUI.

4.6 Deploying an MCP Server Using FunctionGraph

What Is MCP Server?

Model Context Protocol (MCP) is an open-source protocol that aims to provide
context information to large language models (LLMs) in a standardized manner.
The MCP server runs based on the model context protocol and can seamlessly
integrate LLMs with external data sources and tools. By using standardized
interactions, the MCP server helps LLMs obtain abundant context information.
MCP servers are widely used. For example, the file system server can assist AI in
analyzing project files, and the web search server can help AI obtain the latest
information.

Solution Overview

During digital transformation, if you use the traditional cloud server deployment
model, you need to estimate the peak traffic and plan resources in advance.
However, the static resource configuration is not suitable for services with
unpredictable traffic, which may lead to underutilization of servers and waste of
resources, affecting cost-effectiveness. FunctionGraph offers an efficient, flexible,
and reliable solution for hosting MCP servers. With the serverless architecture,
FunctionGraph can automatically adjust resource allocation based on actual

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://devcloud.cn-east-3.huaweicloud.com/codehub/project/3a82e18a4d734bc8b50873d01d362195/codehub/7541953/home?ref=master
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex

traffic, improving resource utilization, reducing resource idleness, and optimizing
costs.

FunctionGraph provides application templates for deploying popular open-source
MCP servers in one click. You can use API Gateway (APIG) to provide services
externally. FunctionGraph not only simplifies the deployment process, but also
automatically processes logs and monitoring data, allowing you to focus on core
service logic development.

Figure 4-48 MCP server template in the FunctionGraph application center

Notes and Constraints
● Currently, the MCP server application can be deployed only in the CN North-

Beijing4 region. Ensure that all resources used in this practice are deployed in
the region.

● Each application can run only one MCP server instance.

Resource and Cost Planning
Table 1 describes the resources and costs required for deploying the MCP server
application.

Table 4-15 Resource and cost planning

Resource Description Billing

FunctionGraph ● Function type:
HTTP function

● Example region:
CN North-
Beijing4

● Quantity: 1

● Billing mode: Pay-per-use
● The first 1 million invocations are

free of charge in a month. For
details about the billing items,
see Pay-per-Use Billing.

API Gateway
(APIG)

● Version: dedicated
gateway

● Example region:
CN North-
Beijing4

● Public inbound
access: enabled

● Quantity: 1

● Billing mode: Pay-per-use
● Select the instance specifications

and bandwidth based on your
service requirements. For details
about the billing items and
standards, see APIG Billing
Overview.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html
https://support.huaweicloud.com/intl/en-us/price-apig/apig_08_0003.html
https://support.huaweicloud.com/intl/en-us/price-apig/apig_08_0003.html

Step 1: Creating a Dedicated Gateway
1. On the APIG console, purchase a dedicated gateway on the Buy Gateway

page by referring to Creating a Gateway.
Create a dedicated gateway named apig-fg by referring to the following
parameters:
– Region: CN North-Beijing4.
– Public Inbound Access: Enable the public inbound access and select the

bandwidth as required.
2. In the navigation pane on the left of the APIG console, choose Gateways. On

the displayed page, click Access Console.

Figure 4-49 Viewing the gateway console

3. On the Parameters tab page, click Modify on the right of the sse_strategy
parameter, change the parameter value to On, and click Save to enable the
SSE transmission policy.

Step 2: Create an MCP Server Application
1. Log in to the FunctionGraph console and select the CN North-Beijing4

region.
2. In the navigation pane on the left, choose Applications. In the upper right

corner, click Create. The page for selecting a template is displayed.
3. Find the MCP Server template and click Create Application. The page for

creating an application is displayed.
4. Set application parameters by referring to Table 4-16. After the configuration

is complete, click Create Now.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

https://console-intl.huaweicloud.com/apig2/?locale=en-us#/manage/instanceStep1
https://support.huaweicloud.com/intl/en-us/usermanual-apig/apig_03_0037.html
https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 4-50 Creating an MCP Server application

Table 4-16 Parameters for creating an MCP server application

Paramete
r

Example Value Description

Template MCP Server The selected function template is
displayed by default. To change it,
click Reselect.

Region CN North-Beijing4 Select a region to create the
application. This application can be
created in the CN North-Beijing4
region.
Regions are geographic areas isolated
from each other. Resources are region-
specific and cannot be used across
regions through internal network
connections. Select a region near you
to ensure the lowest latency possible.

Applicatio
n Name

fg-mcp-server Enter a custom application name,
which contains 2 to 60 characters,
including letters, digits, underscores
(_), and hyphens (-). It must start
with a letter and end with a letter or
digit.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

Paramete
r

Example Value Description

Runtime HTTP The default runtime of the template is
displayed and cannot be changed.

Agency fgs-app-adminagency Select the agency of the function to
access other cloud services.
If the default agency fgs-app-
adminagency has not been created,
select Use no agency, complete other
configurations, and click Create Now.
The system prompts you to create an
agency named fgs-app-adminagency
to ensure that the application can be
created.

Create
Repository

Disabled When enabled, you can create a code
repository in CodeArts Repo to update
and deploy your application code.

(Optional)
Descriptio
n

- Enter a description of the application.
It can contain up to 1,024 characters.

APIG
Instance

apig-fg Select the APIG gateway created in
Step 1: Creating a Dedicated
Gateway.

env uvx You can select either of the following
running environments based on your
requirements:
● npx: Temporarily invokes npm

packages to execute commands. It
is Node.js-based and no global
dependency is required.

● uvx: temporarily installs and runs
the command line tool provided by
the Python package in an isolated
environment.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Paramete
r

Example Value Description

MCP
Service
Configurat
ion

{
 "mcpServers": {
 "fetch": {
 "command": "uvx",
 "args": [
 "mcp-server-fetch"
]
 }
 }
}

Enter the MCP service configuration in
JSON format. You can customize the
configuration as needed.
The JSON configuration file defines
how to obtain data from the MCP
server. The following describes the
parameters in the JSON configuration
file in this example:
● mcpServers: main object of the

configuration file, indicating the
configuration related to the MCP
server.

● fetch: configuration related to the
fetch operation, which defines how
to obtain data from the MCP
server.

● command: name of the command
or tool used to perform the fetch
operation. In this example, the uvx
environment is used.

● args: parameter list provided for
the command command, which is
used to notify the specific task to
be executed.

5. After the application is created, copy the APIG Trigger URL.

By default, a temporary domain name is provided for 30 days in the test
environment. In the actual production environment, prepare a custom domain
name.

Figure 4-51 MCP server application

Step 3: Configuring a Client to Start an AI Dialog

In this example, CherryStudio is used as the client for AI dialog. Install the
CherryStudio client applicable to your device and ensure that a proper model is
configured for CherryStudio to perform basic dialogs.

1. Open the CherryStudio client, go to the settings page, click MCP Servers, and
choose Add Server > Quick Create.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

Figure 4-52 Adding a server

2. Set Type to Server-Sent Events (sse), enter the URL copied in 5 in the URL
text box, change https to http, and add sse to the end of the URL. The
configuration is complete, as shown in Figure 4-53. Click Save.

Figure 4-53 Configuring the MCP Server

3. After the configuration is complete, you can access the assistant page to start
AI dialogs. As shown in Figure 4-54, the MCP server is not enabled for model
dialog, and the model does not provide a normal answer.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Figure 4-54 Dialog with MCP server disabled

4. Click the MCP server button in the chat box and select the MCP server
configured in 2.

Figure 4-55 Configuring the MCP server

5. After the MCP server is enabled, the model invokes the fetch tool to read the
official document link and answers the question correctly, as shown in Figure
4-56.

Figure 4-56 Dialog with MCP server enabled

More MCP Templates
FunctionGraph provides multiple popular MCP application templates to help you
quickly develop MCP services. You can click Learn More of a template to view the
usage description.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Figure 4-57 MCP-related templates

Disclaimer
● This practice uses open-source projects (supergateway, mcp-proxy, and

image build project). Huawei Cloud is not responsible for these projects. For
open-source issues, contact their official communities. Huawei Cloud only
provides computing support.

● This practice is for reference only. If you want to use it in a production
environment, test it thoroughly and evaluate the costs. For any questions,
submit a service ticket.

FunctionGraph
Best Practice 4 Functional Application Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

https://github.com/supercorp-ai/supergateway
https://github.com/sparfenyuk/mcp-proxy
https://github.com/fg-serverless-app/fg-mcp-server
https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex

5 Function Building Practices

5.1 Building an HTTP Function Using an Existing Spring
Boot Project

Introduction
This chapter describes how to deploy services on FunctionGraph using Spring Boot.

Usually, you may build Spring Boot applications using SpringInitializr or IntelliJ
IDEA. This chapter uses the Spring.io project in https://spring.io/guides/gs/rest-
service/ as an example to deploy an HTTP function on FunctionGraph.

Procedure
To deploy an existing project to FunctionGraph, change the listening port of the
project to 8000, and create a file named bootstrap in the same directory as the
JAR file to include the command for executing the JAR file.

In this example, a Maven project created using IntelliJ IDEA is used.

Building a Code Package

1. Open the Spring Boot project and click package in the Maven area to
generate a JAR file.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

https://start.spring.io/
https://spring.io/guides/gs/rest-service/
https://spring.io/guides/gs/rest-service/

Figure 5-1 Generating a JAR file

2. Set the web port to 8000 (do not change this port) using the
application.properties file or specify the port during startup. HTTP functions
only support this port.

Figure 5-2 Configuring port 8000

3. Create a file named bootstrap in the same directory as the JAR file, and enter
the startup parameters.
/opt/function/runtime/java11/rtsp/jre/bin/java -jar -Dfile.encoding=utf-8 /opt/function/code/rest-
service-complete-0.0.1-SNAPSHOT.jar

NO TE

The Java runtime environment can be directly invoked in the function, and no
additional installation is required.

4. Compress the JAR file and bootstrap file into a ZIP package.

Creating an HTTP Function and Uploading Code

Create an HTTP function and upload the ZIP file. For details, see Creating an
HTTP Function.

Verifying the Result

● Using a test event

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html#section2

a. On the function details page, select a version and click Configure Test
Event.

b. On the Configure Test Event page, select the event template, and
modify the path and pathParameters parameters in the template to
construct a simple GET request.

Figure 5-3 Configuring a test event

c. Click Create.
d. Click Test to obtain the response.

When debugging a function, increase the memory size and timeout,
for example, increase them to 512 MB and 5s.

Figure 5-4 Viewing the returned result

● Using an APIG trigger

a. Create an APIG trigger by referring to Using an APIG Trigger. Set the
authentication mode to None for debugging.

b. Copy the generated URL, add the request parameter greeting?
name=fg_user to the end of the URL (see Figure 5-5), and access the
URL using a browser. The response shown in the following figure is
displayed.

Figure 5-5 Invoking the function

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0204.html

The default APIG trigger URL is in the format "Domain name/Function
name". In this example, the URL is https://your_host.com/
springboot_demo, where the function name springboot_demo is the
first part of the path. If you send a GET request for https://
your_host.com/springboot_demo/greeting, the request address received
by Spring Boot contains springboot_demo/greeting. If you have
uploaded an existing project, you cannot access your own services
because the path contains a function name. To prevent this from
happening, use either of the following methods to annotate or remove
the function name:

▪ Method 1: Modify the mapping address in the code. For example,
add the first part of the default path to the GetMapping or class
annotation.

Figure 5-6 Modifying the mapping address

▪ Method 2: Click the trigger name to go to the APIG console, and
delete the function name in the path.

FAQ
1. What Directories Are Accessible to My Code?

An uploaded code package is stored in the /opt/function/code/ directory of
the function (runtime environments, compute resources, or containers).
However, the directory can only be read and cannot be written. If some data
must be written to the function during code running and logged locally, or
your dependency is written by default to the directory where the JAR file is
located, use the /tmp directory.

2. How Are My Logs Collected and Output?
Function instances that have not received any requests during a specific
period of time will be deleted together with their local logs. You will be
unable to view the function logs during function running. Therefore, in
addition to writing logs to your local host, output logs to the console by
setting the output target of Log4j to System.out or by using the print
function.
Logs output to the console will be collected. If you have enabled LTS, the logs
will also be stored in LTS for near real-time analysis.
Suggestion: Enable LTS, and click Go to LTS to view and analyze logs on the
Real-Time Logs tab page.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1834.html#section1

Figure 5-7 Accessing LTS for log analysis

3. What Permissions Does My Code Have?
Similar to common event functions, code does not have the root permission.
Code or commands requiring this permission cannot be executed in HTTP
functions.

4. How Do I Package Spring Boot Projects of Multiple Modules?
Configure the following to package these Spring Boot projects.
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <mainClass>com.example.YourServiceMainClass</mainClass>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

5.2 Building an HTTP Function Using Go

Introduction
This chapter describes how to deploy services on FunctionGraph using Go.

HTTP functions do not support direct code deployment using Go. This section uses
binary conversion as an example to describe how to deploy Go programs on
FunctionGraph.

Procedure
Building a code package

Create the source file main.go. The code is as follows:

// main.go
package main

import (
 "fmt"
 "net/http"

 "github.com/emicklei/go-restful"
)

func registerServer() {
 fmt.Println("Running a Go Http server at localhost:8000/")

 ws := new(restful.WebService)

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

 ws.Path("/")

 ws.Route(ws.GET("/hello").To(Hello))
 c := restful.DefaultContainer
 c.Add(ws)
 fmt.Println(http.ListenAndServe(":8000", c))
}

func Hello(req *restful.Request, resp *restful.Response) {
 resp.Write([]byte("nice to meet you"))
}

func main() {
 registerServer()
}
bootstrap
/opt/function/code/go-http-demo

In main.go, an HTTP server is started using port 8000, and an API whose path is /
hello is registered. When the API is invoked, "nice to meet you" is returned.

Compiling and packaging

1. On the Linux server, compile the preceding code using the go build -o go-
http-demo main.go command. Then, compress go-http-demo and
bootstrap into a ZIP package named xxx.zip.

2. To use the Golang compiler to complete packaging on a Windows host,
perform the following steps:
Switch the compilation environment
Check the previous Golang compilation environment
go env
Set the following parameters to the corresponding value of Linux
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=linux
go env -w GOOS=linux

go build -o [target executable program] [source program]
Example
go build -o go-http-demo main.go

Restore the compilation environment
set GOARCH=amd64
go env -w GOARCH=amd64
set GOOS=windows
go env -w GOOS=windows

Creating an HTTP function and uploading code

Create an HTTP function and upload the xxx.zip package. For details, see
Creating an HTTP Function.

Creating an APIG (Dedicated) trigger

Create an APIG (dedicated) trigger by referring to Using an APIG Trigger. Set the
authentication mode to None for debugging.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0204.html

Figure 5-8 APIG trigger

Invocation test

Copy the URL of the APIG trigger and the /hello path registered in the code to the
address box of the browser. The following information is displayed.

Figure 5-9 Request result

5.3 Using FunctionGraph to Access RDS for MySQL

5.3.1 Introduction

Scenario
In FunctionGraph, different function instances do not share states. Databases can
persistently store structured data, which achieves state sharing. FunctionGraph can
be used to access cloud databases to query and insert data.

This section describes how to access RDS for MySQL from FunctionGraph and
query data, and provides sample code for testing. The sample uses a database
connection pool and retry mechanism to improve performance and reliability,
demonstrating a secure and efficient way to work with RDS for MySQL in
FunctionGraph.

Resource and Cost Planning
Table 1 describes the resources required for the practice of accessing RDS for
MySQL from FunctionGraph.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

Table 5-1 Resource and cost planning

Resource Description Billing

FunctionGraph ● Function type:
Event Function

● Region: CN East-
Shanghai1

● Quantity: 1

● Billing mode: Pay-per-use
● The first 1 million invocations are

free of charge in a month. For
details about the billing items,
see Pay-per-Use Billing.

RDS ● Region: CN East-
Shanghai1

● Engine Options:
MySQL

● Quantity: 1

● Billing mode: Pay-per-use
● Select specifications based on

service requirements. For details
about billing items and standards,
see RDS for MySQL Pay-per-Use
Billing.

VPC ● Region: CN East-
Shanghai1

● Number of
subnets: 1

● Number of
security groups: 1

● Quantity: 1

● VPC: free
● Subnet: free
● Security group: free

Procedure
This following describes the procedure for using a FunctionGraph function to
access RDS for MySQL. For details, see Procedure.

Table 5-2 Procedure for accessing RDS for MySQL from a function

Step Description

Prerequisites Before starting this practice, ensure you have a VPC network
environment, an RDS for MySQL instance with its database
and tables, and a function agency with VPC Administrator
permission already created.

Step 1: Creating
Function
Dependencies

In this practice, Python sample code is used to implement
database connection and access. The code depends on the
pymysql and DBUtils packages, which must be uploaded to
the FunctionGraph console for subsequent invocations.

Step 2: Creating
a Function

On the FunctionGraph console, create a function for
accessing RDS for MySQL.

Step 3:
Configuring the
Function

On the function details page, configure the function code,
dependencies, and function settings.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0009.html
https://support.huaweicloud.com/intl/en-us/price-rds-mysql/rds_00_0005.html
https://support.huaweicloud.com/intl/en-us/price-rds-mysql/rds_00_0005.html

Step Description

Step 4: Testing
the Function

Test whether the function can access records in the database
table of the RDS for MySQL instance.

5.3.2 Procedure

Prerequisites
● You have created a VPC and a default subnet.
● You have purchased an RDS for MySQL DB instance, created a database,

and ensured that the database contains available tables. The RDS instance
must be in the same region as the function. This practice uses CN East-
Shanghai1 as an example.

● You have created an agency with the VPC Administrator permission.

Step 1: Creating Function Dependencies

Table 5-3 Downloading dependency packages

Depend
ency
Package

Description Link

pymysql MySQL database connector compiled using
Python, which enables Python programs to
communicate with MySQL databases.

pymysql_py36-1.zip
(SHA-256 verification
file)

DBUtils Database connection pool tool package,
which can manage and reuse database
connections.

dbutils_py36-1.zip
(SHA-256 verification
file)

1. Log in to the FunctionGraph console and select CN East-Shanghai1 region.
2. Log in to the FunctionGraph console, and choose Functions > Dependencies

in the navigation pane.
3. Click Create Dependency. On the displayed page, create the pymysql_py36

and dbutils_py36 dependencies by referring to Table 5-4.
The pymysql dependency is used as an example, as shown in Figure 5-10.
The parameters for the dbutils dependency are the same.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_05_0019.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0920.html#section2
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/pymysql_py36-1.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/pymysql_py36-1.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/pymysql_py36-1.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/dbutils_py36-1.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/dbutils_py36-1.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/dbutils_py36-1.zip.sha256
https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Table 5-4 Parameters for creating a dependency

Parameter Value Description

Name pymysql_py36 Dependency name.
The value can contain a maximum of
96 characters, including letters, digits,
underscores (_), periods (.), and
hyphens (-). Start with a letter and
end with a letter or digit.

Runtime Python 3.6 Runtime language of the dependency.

Code Entry
Mode

Upload ZIP You can upload a ZIP file or upload a
ZIP file from OBS.
● Upload ZIP: Click Add to upload a

ZIP file. The maximum file size is
10 MB.

● Upload from OBS: Specify an OBS
link URL. For details about how to
upload an object to OBS, see
Uploading an Object. For details
about how to obtain the OBS link
URL, see Accessing an Object
Using a URL.

Upload File Click Add and upload
the ZIP package
downloaded in Table
5-3.

This parameter is displayed after you
select Upload ZIP.

Description - Enter a description of the dependency.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045853663.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0319.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0319.html

Figure 5-10 Creating a dependency

Step 2: Creating a Function
1. Return to the FunctionGraph console. In the navigation pane, choose

Functions > Function List, and click Create Function.

2. Set the basic information about the function by referring to Table 5-5, as
shown in Figure 5-11.

Table 5-5 Basic information for creating a function

Parameter Example Value Description

Function
Type

Event Function An event function is triggered by a specific
event, which is usually a request event in
JSON format.

Region CN East-
Shanghai1

Select the region where the function is
located. This practice uses the CN East-
Shanghai1 region as an example.

Function
Name

access-mysql-
demo

Enter a function name. The naming rules
are as follows:
● Consists of 1 to 60 characters, and can

contain letters, digits, hyphens (-), and
underscores (_).

● Starts with a letter and end with a letter
or digit.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

Parameter Example Value Description

Enterprise
Project

default Select the enterprise project to which the
function belongs. Enterprise projects let
you manage cloud resources and users by
project.
The default value is default. You can select
the created enterprise project.
If the Enterprise Management service is
not enabled, this parameter is
unavailable. For details, see Enabling the
Enterprise Project Function.

Agency VPC Select an agency for the function. An
agency is used to authorize FunctionGraph
to access other cloud services.
In this practice, the function needs to
access resources in a VPC. Therefore, you
need to select an agency with the VPC
Administrator permission.

Runtime Python 3.6 Select a runtime to compile the function.
This practice uses Python 3.6 as an
example.

Figure 5-11 Basic information for creating a function

3. Configure the advanced settings by referring to Table 5-6, and click Create
Now, as shown in Figure 5-12.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

https://support.huaweicloud.com/intl/en-us/usermanual-em/eps_15_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/eps_15_0001.html

Table 5-6 Advanced settings for creating a function

Paramete
r

Example Value Description

Public
Access

Disabled If this feature is enabled, functions can
access services on the public network
through the default NIC. The public
network access bandwidth is shared
among users and applies only to test
scenarios.

VPC
Access

Enabled
● VPC: vpc-fg

(192.168.x.x/x)
● Subnet: subnet-

fg
(192.168.x.x/x)

After this feature is enabled, you can
select the VPC and subnet that the
function needs to access. Select the
same VPC as the created RDS
instance.
If this feature is enabled, functions will
use the NIC bound to the configured
VPC for network access, and the default
NIC of FunctionGraph will be disabled.
That is, the Public Access parameter
does not take effect.

Collect
Logs

Disabled After it is enabled, logs generated during
function execution will be reported to
LTS.
LTS will be billed on a pay-per-use basis.
For details, see LTS Pricing Details.

Figure 5-12 Advanced settings for creating a function

Step 3: Configuring the Function
1. On the function details page, copy Sample Code for Accessing RDS for

MySQL, as shown in Figure 5-13, paste it to the inline editor to overwrite the
code in the index.py file, and click Deploy.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/lts

NO TICE

The sample code in this practice queries the first 10 records from the user
table in the RDS for MySQL database. Modify the code according to the
actual table name in your database.

Figure 5-13 Deploying code

2. On the Code tab page, scroll to the Dependencies area at the bottom of the
page and click Add.

3. In the Select Dependency dialog box, set Type to Private, and add the
pymysql_py36 and dbutils_py36 dependencies created in Step 1: Creating
Function Dependencies, as shown in Figure 5-14.

Figure 5-14 Selecting dependencies

4. After the dependencies are added, the page shown in Figure 5-15 is
displayed.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Figure 5-15 Dependencies

5. Choose Configuration > Basic Settings, set Execution Timeout (s) to 30 and
Memory (MB) to 256, and click Save.

Figure 5-16 Configuring basic settings

6. Choose Configuration > Environment Variables, and click Edit Environment
Variable. In the dialog box that is displayed, click Add. Add environment
variables by referring to Table 5-7. After the environment variables are added,
the page shown in Figure 5-17 is displayed. Click OK.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

Table 5-7 Environment variables

Key Example
Value

Description

host 192.168.x.x Access address of the database instance.
● For RDS databases in the same VPC as the

function, set this environment variable to the
private IP address of the database.

● For RDS databases in different VPCs or regions,
set this environment variable to the public IP
address of the database.

On the RDS console, go to the details page of the
target RDS instance, choose Connectivity &
Security in the navigation pane, and obtain the
private or public IP address of the database.

database db_test Name of the database created in the RDS
instance.

passwor
d

****** Database password set in the RDS instance.
The password is sensitive information. You are
advised to enable encryption.

port 3306 Database port set in the RDS instance.

usernam
e

fg_user Name of the account created in the RDS instance.

Figure 5-17 Editing environment variables

7. Choose Configuration > Lifecycle, enable Initialization, set Initialization
Timeout (s) to 60 and Function Initializer to index.initializer, as shown in
Figure 5-18, and click Save.

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

Figure 5-18 Configuring initialization

Step 4: Testing the Function
1. Return to the Code tab page and click Test. In the displayed dialog box, select

Blank Template, and click Create.
2. Click Test to view the function execution result, as shown in Figure 5-19.

According to the sample code, the function returns the first 10 records in the
user table of the RDS for MySQL DB instance.

Figure 5-19 Testing the function

5.3.3 Sample Code for Accessing RDS for MySQL

Sample Code
This sample code queries the first 10 records from the user table in the RDS for
MySQL instance database. The code can efficiently and reliably perform database
operations by using the database connection pool and retry mechanism.

The following shows the complete sample code. For details about the code of the
connection pool and retry mechanism, see Sample Code Interpretation.

import pymysql
import time
from functools import wraps
from DBUtils.PooledDB import PooledDB

db_client = None
POOL_CONFIG = { # Connection pool configuration
 'max_connections': 5, # Maximum number of connections
 'keepalive_interval': 60, # Connection keepalive interval (s)

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

 'max_retries': 3, # Maximum number of retries
 'retry_delay': 1 # Retry interval (s)
}

def initializer(context):
 global db_client
 user = context.getUserData('username')
 password = context.getUserData('password')
 host = context.getUserData('host')
 port = int(context.getUserData('port'))
 database = context.getUserData('database')

 dbConfig = { # MySQL database configuration
 'host': host,
 'port': port,
 'user': user,
 'password': password,
 'database': database,
 'charset': 'utf8',
 }
 db_client = Database(context, POOL_CONFIG, dbConfig)

def handler(event, context): # Handler
 logger = context.getLogger()

 try:
 result= db_client.query("SELECT * FROM user LIMIT 10")
 except Exception as e:
 logger.info("query database error:%s" % e)
 return {"code": 400, "errorMsg": "internal error %s" % e}

 return result

class MySQLConnectionPool:
 def __init__(self, context, pool_config, db_config):
 """
 Initialize the database connection pool
 :param db_config: database configuration
 :param pool_config: connection pool configuration
 """
 self.context = context
 self.logger = context.getLogger();

 self.db_config = db_config
 self.pool_config = pool_config
 self.pool = self._create_pool()
 self.last_keepalive_time = 0

 def _create_pool(self):
 """
 Create a connection pool
 :return: connection pool object
 """
 try:
 pool = PooledDB(
 creator=pymysql,
 maxconnections=self.pool_config['max_connections'],
 mincached=1,
 **self.db_config
)
 return pool
 except Exception as e:
 self.logger.error(f"Failed to create connection pool: {e}")
 raise

 def _get_connection(self):
 """
 Obtain a connection from the connection pool and ensure that the connection is valid
 :return: database connection object

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

 """
 conn = self.pool.connection()
 if not self._is_connection_alive(conn):
 conn = self.pool.connection()
 return conn

 def _is_connection_alive(self, conn):
 """
 Check whether the connection is alive
 :param conn: database connection object
 :return: bool
 """
 try:
 with conn.cursor() as cursor:
 cursor.execute("SELECT 1")
 return True
 except Exception as e:
 self.logger.warning(f"Connection is not alive: {e}")
 return False

 def _close_connection(self, conn):
 """
 Closes the connection
 :param conn: database connection object
 """
 try:
 conn.close()
 self.logger.info("Connection closed")
 except Exception as e:
 self.logger.error(f"Failed to close connection: {e}")

 def _execute_query(self, conn, sql, params=None):
 """
 Query the database
 :param conn: database connection object
 :param sql: SQL statement
 :param params: SQL parameter
 :return: query result
 """
 try:
 with conn.cursor() as cursor:
 cursor.execute(sql, params)
 if sql.strip().lower().startswith('select'):
 return cursor.fetchall()
 return None
 except Exception as e:
 self.logger.error(f"Query failed: {e}")
 raise

 def _execute_write(self, conn, sql, params=None):
 """
 Perform write operations (insert, update, and delete)
 :param conn: database connection object
 :param sql: SQL statement
 :param params: SQL parameter
 :return: number of affected rows
 """
 try:
 with conn.cursor() as cursor:
 cursor.execute(sql, params)
 conn.commit()
 return cursor.rowcount
 except Exception as e:
 self.logger.error(f"Write operation failed: {e}")
 conn.rollback()
 raise

def retry(max_retries=3, retry_delay=1):
 """

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

 Retry decorator
 :param max_retries: Maximum retries
 :param retry_delay: Retry interval (s)
 """
 def decorator(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 retries = 0
 while retries < max_retries:
 try:
 return func(*args, **kwargs)
 except Exception as e:
 print(f"Attempt {retries + 1} failed: {e}")
 if retries < max_retries - 1:
 time.sleep(retry_delay)
 retries += 1
 print(f"Failed after {max_retries} attempts")
 raise
 return wrapper
 return decorator

class Database:
 def __init__(self, context, pool_config, db_config):
 self.pool_config = pool_config
 self.db_config = db_config
 self.pool = MySQLConnectionPool(context, pool_config, db_config)

 @retry(max_retries=POOL_CONFIG['max_retries'], retry_delay=POOL_CONFIG['retry_delay'])
 def query(self, sql, params=None):
 """
 Perform the query operation
 :param sql: SQL statement
 :param params: SQL parameter
 :return: query result
 """
 conn = self.pool._get_connection()
 result = self.pool._execute_query(conn, sql, params)
 return result

 @retry(max_retries=POOL_CONFIG['max_retries'], retry_delay=POOL_CONFIG['retry_delay'])
 def execute(self, sql, params=None):
 """
 Perform write operations (insert, update, and delete)
 :param sql: SQL statement
 :param params: SQL parameter
 :return: number of affected rows
 """
 conn = self.pool._get_connection()
 result = self.pool._execute_write(conn, sql, params)
 return result

5.3.4 Sample Code Interpretation

Connection Pool
In the sample code, the MySQL connection pool (DBUtils.PooledDB) is created, the
built-in connection keepalive mechanism is provided, and the maximum number
of connections (max_connections) and connection keepalive interval
(keepalive_interval) are configured. The code snippet is as follows:

POOL_CONFIG = { # Connection pool configuration
 'max_connections': 5, # Maximum number of connections
 'keepalive_interval': 60, # Connection keepalive interval (s)
 'max_retries': 3, # Maximum number of retries
 'retry_delay': 1 # Retry interval (s)
}

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

class MySQLConnectionPool:
 def __init__(self, context, pool_config, db_config):
 """
 Initialize the database connection pool
 :param db_config: database configuration
 :param pool_config: connection pool configuration
 """
 self.context = context
 self.logger = context.getLogger();

 self.db_config = db_config
 self.pool_config = pool_config
 self.pool = self._create_pool()
 self.last_keepalive_time = 0

 def _create_pool(self):
 """
 Create a connection pool
 :return: connection pool object
 """
 try:
 pool = PooledDB(
 creator=pymysql,
 maxconnections=self.pool_config['max_connections'],
 mincached=1,
 **self.db_config
)
 return pool
 except Exception as e:
 self.logger.error(f"Failed to create connection pool: {e}")
 raise

 def _get_connection(self):
 """
 Obtain a connection from the connection pool and ensure that the connection is valid
 :return: database connection object
 """
 conn = self.pool.connection()
 if not self._is_connection_alive(conn):
 conn = self.pool.connection()
 return conn

 def _is_connection_alive(self, conn):
 """
 Check whether the connection is alive
 :param conn: database connection object
 :return: bool
 """
 try:
 with conn.cursor() as cursor:
 cursor.execute("SELECT 1")
 return True
 except Exception as e:
 self.logger.warning(f"Connection is not alive: {e}")
 return False

 def _close_connection(self, conn):
 """
 Closes the connection
 :param conn: database connection object
 """
 try:
 conn.close()
 self.logger.info("Connection closed")
 except Exception as e:
 self.logger.error(f"Failed to close connection: {e}")

 def _execute_query(self, conn, sql, params=None):
 """

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

 Query the database
 :param conn: database connection object
 :param sql: SQL statement
 :param params: SQL parameter
 :return: query result
 """
 try:
 with conn.cursor() as cursor:
 cursor.execute(sql, params)
 if sql.strip().lower().startswith('select'):
 return cursor.fetchall()
 return None
 except Exception as e:
 self.logger.error(f"Query failed: {e}")
 raise

 def _execute_write(self, conn, sql, params=None):
 """
 Perform write operations (insert, update, and delete)
 :param conn: database connection object
 :param sql: SQL statement
 :param params: SQL parameter
 :return: number of affected rows
 """
 try:
 with conn.cursor() as cursor:
 cursor.execute(sql, params)
 conn.commit()
 return cursor.rowcount
 except Exception as e:
 self.logger.error(f"Write operation failed: {e}")
 conn.rollback()
 raise

Reusing created connections with the MySQL connection pool can improve
program performance. The maximum number of connections ensures that
connection resources are used within a controllable range and thread security is
ensured.

Related concepts:

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

Table 5-8 Concepts related to connections

Concept Description

Range of
the
maximum
number of
connections

The recommended maximum MySQL connections fall within:
● Lower limit of the maximum number of connections =

(Concurrency of a single function instance) x (Concurrent
MySQL accesses per function execution)

● Upper limit of the maximum number of connections =
(Maximum number of MySQL instance connections)/
(Maximum number of function instances)

For a function with a maximum of 5 concurrent requests per
instance, 2 concurrent MySQL accesses per function execution, a
maximum of 400 instances by default, and a maximum of 30,000
MySQL connections, the calculation is as follows:
● Lower limit of the maximum number of connections = 5 x 2 =

10
● Upper limit of the maximum number of connections =

30000/400 = 75
Based on the preceding result, you are advised to set the
maximum number of connections to 50.

Connection
Keepalive
Interval

Do not set the connection keepalive interval longer than the
function execution timeout to avoid disconnection issues.

Retry
Build an automatic retry mechanism using decorators to ensure that MySQL
operations are retried for a specified number of times after a failure. This
significantly reduces the impact of temporary faults. For example, if the service is
temporarily unavailable or the invoking times out due to instantaneous network
jitter or disk jitter, the mechanism can improve the MySQL operation success rate.

The code snippet is as follows:

POOL_CONFIG = { # Connection pool configuration
 'max_connections': 5, # Maximum number of connections
 'keepalive_interval': 60, # Connection keepalive interval (s)
 'max_retries': 3, # Maximum number of retries
 'retry_delay': 1 # Retry interval (s)
}

class Database:
 def __init__(self, context, pool_config, db_config):
 self.pool_config = pool_config
 self.db_config = db_config
 self.pool = MySQLConnectionPool(context, pool_config, db_config)

 @retry(max_retries=POOL_CONFIG['max_retries'], retry_delay=POOL_CONFIG['retry_delay'])
 def query(self, sql, params=None):
 """
 Perform the query operation
 :param sql: SQL statement
 :param params: SQL parameter
 :return: query result

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0303.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1828.html

 """
 conn = self.pool._get_connection()
 result = self.pool._execute_query(conn, sql, params)
 return result

 @retry(max_retries=POOL_CONFIG['max_retries'], retry_delay=POOL_CONFIG['retry_delay'])
 def execute(self, sql, params=None):
 """
 Perform write operations (insert, update, and delete)
 :param sql: SQL statement
 :param params: SQL parameter
 :return: number of affected rows
 """
 conn = self.pool._get_connection()
 result = self.pool._execute_write(conn, sql, params)
 return result

def retry(max_retries=3, retry_delay=1):
 """
 Retry decorator
 :param max_retries: Maximum retries
 :param retry_delay: Retry interval (s)
 """
 def decorator(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 retries = 0
 while retries < max_retries:
 try:
 return func(*args, **kwargs)
 except Exception as e:
 print(f"Attempt {retries + 1} failed: {e}")
 if retries < max_retries - 1:
 time.sleep(retry_delay)
 retries += 1
 print(f"Failed after {max_retries} attempts")
 raise
 return wrapper
 return decorator

FunctionGraph
Best Practice 5 Function Building Practices

Issue 01 (2026-01-12) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

	Contents
	1 FunctionGraph Best Practices
	2 Performance Optimization and Security Practices
	2.1 Performance Optimization
	2.2 Cold Start Optimization
	2.3 Security Best Practices

	3 Data Processing Practices
	3.1 Using FunctionGraph to Compress Images in OBS
	3.2 Using FunctionGraph to Watermark Images in OBS
	3.2.1 Introduction
	3.2.2 Preparation
	3.2.3 Building a Program
	3.2.4 Adding an Event Source
	3.2.5 Watermarking Images

	3.3 Using FunctionGraph to Convert DIS Data Format and Store the Data to CloudTable
	3.3.1 Introduction
	3.3.2 Preparation
	3.3.3 Building a Program
	3.3.4 Adding an Event Source
	3.3.5 Processing Data

	3.4 Uploading Files Using APIs in FunctionGraph
	3.4.1 Introduction
	3.4.2 Resource Planning
	3.4.3 Procedure
	3.4.3.1 Node.js
	3.4.3.2 Python

	3.5 Converting Device Coordinate Data in IoTDA
	3.5.1 Introduction
	3.5.2 Preparation
	3.5.3 Building a Program

	3.6 Using FunctionGraph to Encrypt and Decrypt Files in OBS
	3.6.1 Introduction
	3.6.2 Preparation
	3.6.3 Building a Program
	3.6.4 Adding an Event Source
	3.6.5 Processing Files

	3.7 Identifying Abnormal Service Logs in LTS and Storing Them in OBS
	3.7.1 Introduction
	3.7.2 Preparation
	3.7.3 Building a Program
	3.7.4 Adding an Event Source
	3.7.5 Processing Log Data

	3.8 Using FunctionGraph to Filter Logs in LTS in Real Time
	3.8.1 Introduction
	3.8.2 Preparation
	3.8.3 Building a Program
	3.8.4 Adding an Event Source
	3.8.5 Processing Results

	3.9 Using FunctionGraph to Rotate Images Stored in OBS
	3.9.1 Introduction
	3.9.2 Preparation
	3.9.3 Building a Program
	3.9.4 Processing Images

	3.10 Using FunctionGraph to Compress and Watermark Images

	4 Functional Application Practices
	4.1 Using FunctionGraph and CTS to Identify Login and Logout Operations from Invalid IP Addresses
	4.1.1 Introduction
	4.1.2 Preparation
	4.1.3 Building a Program
	4.1.4 Adding an Event Source
	4.1.5 Processing Operation Records

	4.2 Using FunctionGraph Functions As the Backend to Implement APIG Custom Authorizers
	4.2.1 Introduction
	4.2.2 Resource Planning
	4.2.3 Building a Program
	4.2.4 Adding an Event Source
	4.2.5 Debugging and Calling the API

	4.3 Using FunctionGraph HTTP Functions to Process gRPC Requests
	4.4 Using a Java Function and Log4j2 to Print Logs
	4.5 Using FunctionGraph to Deploy Stable Diffusion for AI Drawing
	4.5.1 Introduction
	4.5.2 Resource and Cost Planning
	4.5.3 Procedure
	4.5.4 Deploying and Using the Stable Diffusion Application
	4.5.5 (Optional) Binding a Custom Domain Name
	4.5.6 (Optional) Uploading a Custom Model
	4.5.7 (Advanced) Using ECS as an NFS Server to Isolate Resources of Multiple Users
	4.5.8 (Advanced) Mounting an SFS File System to Multiple Users
	4.5.9 (Advanced) Enabling WebUI Authentication
	4.5.10 (Advanced) Accessing Applications Using APIs
	4.5.11 Disclaimer

	4.6 Deploying an MCP Server Using FunctionGraph

	5 Function Building Practices
	5.1 Building an HTTP Function Using an Existing Spring Boot Project
	5.2 Building an HTTP Function Using Go
	5.3 Using FunctionGraph to Access RDS for MySQL
	5.3.1 Introduction
	5.3.2 Procedure
	5.3.3 Sample Code for Accessing RDS for MySQL
	5.3.4 Sample Code Interpretation

